Esempio n. 1
0
def fit_and_plot(weight_decay):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize(init.Normal(sigma=1))
    # 对权重参数做 L2 范数正则化,即权重衰减。
    trainer_w = gluon.Trainer(net.collect_params('.*weight'), 'sgd', {
        'learning_rate': learning_rate,
        'wd': weight_decay
    })
    # 不对偏差参数做 L2 范数正则化。
    trainer_b = gluon.Trainer(net.collect_params('.*bias'), 'sgd',
                              {'learning_rate': learning_rate})
    train_ls = []
    test_ls = []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            # 对两个 Trainer 实例分别调用 step 函数。
            trainer_w.step(batch_size)
            trainer_b.step(batch_size)
        train_ls.append(
            loss(net(train_features), train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features), test_labels).mean().asscalar())
    gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                range(1, num_epochs + 1), test_ls, ['train', 'test'])
    return 'w[:10]:', net[0].weight.data()[:, :10], 'b:', net[0].bias.data()
Esempio n. 2
0
def optimize(batch_size, lr, num_epochs, log_interval):
    [w, b], sqrs = init_params()
    ls = [loss(net(features, w, b), labels).mean().asnumpy()]
    for epoch in range(1, num_epochs + 1):
        for batch_i, (X, y) in enumerate(
                gb.data_iter(batch_size, len(features), features, labels)):
            with autograd.record():
                l = loss(net(X, w, b), y)
            l.backward()
            adagrad([w, b], sqrs, lr, batch_size)
            if batch_i * batch_size % log_interval == 0:
                ls.append(loss(net(features, w, b), labels).mean().asnumpy())
    print('w:', w, '\nb:', b, '\n')
    es = np.linspace(0, num_epochs, len(ls), endpoint=True)
    gb.semilogy(es, ls, 'epoch', 'loss')
Esempio n. 3
0
def fit_and_plot(lambd):
    w, b = params = init_params()
    train_ls = []
    test_ls = []
    for _ in range(num_epoch):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l.backward()
            gb.sgd(params, lr, batch_size)
        train_ls.append(
            loss(net(train_feature, w, b), train_labels).mean().asscalar())
        test_ls.append(
            loss(net(test_feature, w, b), test_labels).mean().asscalar())
    gb.semilogy(range(1, num_epoch + 1), train_ls, 'epoch', 'loss',
                range(1, num_epoch + 1), test_ls, ['train', 'test'])
    return w[:10].T, b
Esempio n. 4
0
def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, verbose_epoch, learning_rate, weight_decay, batch_size):
    train_ls = []
    if test_features is not None:
        test_ls = []
    train_iter = gdata.DataLoader(gdata.ArrayDataset(train_features,
                                                     train_labels),
                                  batch_size,
                                  shuffle=True)
    # 这里使用了 Adam 优化算法。
    trainer = gluon.Trainer(net.collect_params(), 'adam', {
        'learning_rate': learning_rate,
        'wd': weight_decay
    })
    net.initialize(init=init.Xavier(), force_reinit=True)
    for epoch in range(1, num_epochs + 1):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
            cur_train_l = get_rmse_log(net, train_features, train_labels)
        if epoch >= verbose_epoch:
            print("epoch %d, train loss: %f" % (epoch, cur_train_l))
        train_ls.append(cur_train_l)
        if test_features is not None:
            cur_test_l = get_rmse_log(net, test_features, test_labels)
            test_ls.append(cur_test_l)
    if test_features is not None:
        gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                    range(1, num_epochs + 1), test_ls, ['train', 'test'])
    else:
        gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss')
    if test_features is not None:
        return cur_train_l, cur_test_l
    else:
        return cur_train_l
Esempio n. 5
0
def optimize(batch_size, trainer, num_epochs, decay_epoch, log_interval,
             features, labels, net):
    i = 0
    dataset = gdata.ArrayDataset(features, labels)
    data_iter = gdata.DataLoader(dataset, batch_size, shuffle=True)
    loss = gloss.L2Loss()
    ls = [loss(net(features), labels).mean().asnumpy()]
    for epoch in range(1, num_epochs + 1):
        # 学习率自我衰减。
        if decay_epoch and epoch > decay_epoch:
            trainer.set_learning_rate(trainer.learning_rate * 0.1)
        for batch_i, (X, y) in enumerate(data_iter):
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            i += 1
            trainer.step(batch_size)
            if batch_i * batch_size % log_interval == 0:
                ls.append(loss(net(features), labels).mean().asnumpy())
    # 为了便于打印,改变输出形状并转化成 numpy 数组。
    print('i:', i, 'w:', net[0].weight.data(), '\nb:', net[0].bias.data(),
          '\n')
    es = np.linspace(0, num_epochs, len(ls), endpoint=True)
    gb.semilogy(es, ls, 'epoch', 'loss')
Esempio n. 6
0
    return net

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    # num_epochs, learning_rate, weight_decay, batch_size
    
    train_ls, valid_ls = [], []
    train_iter = gdata.DataLoader(gdata.ArrayDataset(
        train_features, train_labels), batch_size, shuffle=True)
    
    trainer = gluon.Trainer(net.collect_params(), 'adam', {
        'learning_rate': learning_rate, 'wd': weight_decay})
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
        train_ls.append(rmse(net, train_features, train_labels))
        valid_ls.append(rmse(net, valid_features, valid_labels))
        print('epoch '+str(epoch)+' done. rmse='+str(rmse(net, train_features, train_labels))+'/'+str(rmse(net, valid_features, valid_labels)),end='\r')
    return train_ls, valid_ls

# ---
net = get_net()
train_ls, valid_ls = train(net, train_features, train_labels, None, None,
                    num_epochs, lr, wd, batch_size)
gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
print('train rmse %f' % train_ls[-1])
print('valid rmse %f' % valid_ls[-1])
net.save_parameters('./xyz_v2.2.param')