Esempio n. 1
0
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()

    # create model
    model = get_model(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    test_loader = build_dataloader_test(cfg)

    eval_path = cfg.CONFIG.LOG.EVAL_DIR
    if not os.path.exists(eval_path):
        os.makedirs(eval_path)
    criterion = nn.CrossEntropyLoss().cuda()

    file = os.path.join(eval_path, str(cfg.DDP_CONFIG.GPU_WORLD_RANK) + '.txt')
    test_classification(model, test_loader, criterion, cfg, file)
    torch.distributed.barrier()

    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        print("Start merging results...")
        merge(eval_path, cfg)
    else:
        print(cfg.DDP_CONFIG.GPU_WORLD_RANK, "Evaluation done!")
Esempio n. 2
0
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()

    # create model
    model = get_model(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    val_loader, _ = build_dataloader_val(cfg)

    if cfg.CONFIG.MODEL.LOAD:
        model, _ = load_model(model, cfg, load_fc=True)

    criterion = nn.CrossEntropyLoss().cuda()

    # adversarial_classification(model, val_loader, -1, criterion, cfg, writer)
    validation_classification(model, val_loader, -1, criterion, cfg, writer)

    if writer is not None:
        writer.close()
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()

    # create model
    model = get_model(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    train_loader, val_loader, train_sampler, val_sampler, mg_sampler = build_dataloader(
        cfg)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=cfg.CONFIG.TRAIN.LR,
                                momentum=cfg.CONFIG.TRAIN.MOMENTUM,
                                weight_decay=cfg.CONFIG.TRAIN.W_DECAY)
    if cfg.CONFIG.MODEL.LOAD:
        model, _ = load_model(model, optimizer, cfg, load_fc=True)

    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=cfg.CONFIG.TRAIN.LR_MILESTONE,
        gamma=cfg.CONFIG.TRAIN.STEP)
    criterion = nn.CrossEntropyLoss().cuda()

    base_iter = 0
    for epoch in range(cfg.CONFIG.TRAIN.EPOCH_NUM):
        if cfg.DDP_CONFIG.DISTRIBUTED:
            train_sampler.set_epoch(epoch)

        base_iter = train_classification(base_iter,
                                         model,
                                         train_loader,
                                         epoch,
                                         criterion,
                                         optimizer,
                                         cfg,
                                         writer=writer)
        scheduler.step()
        if epoch % cfg.CONFIG.VAL.FREQ == 0 or epoch == cfg.CONFIG.TRAIN.EPOCH_NUM - 1:
            validation_classification(model, val_loader, epoch, criterion, cfg,
                                      writer)

        if epoch % cfg.CONFIG.LOG.SAVE_FREQ == 0:
            if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0 or cfg.DDP_CONFIG.DISTRIBUTED == False:
                save_model(model, optimizer, epoch, cfg)
    if writer is not None:
        writer.close()
Esempio n. 4
0
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()

    # create model
    # model = get_model(cfg)
    model = directpose_resnet_lpf_fpn(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    # train_loader, val_loader, train_sampler, val_sampler, mg_sampler = build_pose_train_loader(cfg)
    train_loader = build_pose_train_loader(cfg)
    val_loader = build_pose_test_loader(cfg, cfg.CONFIG.DATA.DATASET.VAL[0])
    optimizer = build_pose_optimizer(cfg, model)
    scheduler = build_lr_scheduler(cfg, optimizer)

    # if cfg.CONFIG.MODEL.LOAD:
    #     model, _ = load_model(model, optimizer, cfg, load_fc=True)
    # criterion = nn.CrossEntropyLoss().cuda()

    pipeline = DirectposePipeline(0,
                                  cfg.CONFIG.TRAIN.ITER_NUM,
                                  model,
                                  train_loader,
                                  optimizer,
                                  scheduler,
                                  cfg,
                                  writer=writer)
    while pipeline.base_iter < pipeline.max_iter:
        pipeline.train_step()

        if pipeline.base_iter % cfg.CONFIG.VAL.EVAL_PERIOD == 0 or pipeline.base_iter == pipeline.max_iter:
            pipeline.validate(val_loader)

        if pipeline.base_iter % cfg.CONFIG.TRAIN.CHECKPOINT_PERIOD == 0:
            if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0 or cfg.DDP_CONFIG.DISTRIBUTED == False:
                pipeline.save_model()

    if writer is not None:
        writer.close()
Esempio n. 5
0
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()
    logger = get_logger(tb_logdir, "trainer", log_file=True)

    # create model
    model = get_model(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    data_path_dict = create_dataloader_path(
        cfg.CONFIG.COOT_DATA.DATA_PATH,
        cfg.CONFIG.COOT_DATA.DATASET_NAME,
        video_feature_name=cfg.CONFIG.COOT_DATA.FEATURE)

    train_set, val_set = create_datasets(data_path_dict, cfg,
                                         cfg.CONFIG.COOT_DATA.VIDEO_PRELOAD,
                                         cfg.CONFIG.COOT_DATA.TEXT_PRELOAD)
    train_loader, val_loader = create_loaders(train_set, val_set,
                                              cfg.CONFIG.TRAIN.BATCH_SIZE,
                                              cfg.CONFIG.DATA.NUM_WORKERS)
    optimizer = RAdam(model.get_params(),
                      lr=cfg.CONFIG.TRAIN.LR,
                      betas=(cfg.CONFIG.TRAIN.MOMENTUM,
                             cfg.CONFIG.TRAIN.ADAM_BETA2),
                      eps=cfg.CONFIG.TRAIN.ADAM_EPS,
                      weight_decay=cfg.CONFIG.TRAIN.W_DECAY)

    if cfg.CONFIG.MODEL.LOAD:
        model, _ = load_model(model, optimizer, cfg, load_fc=True)

    if cfg.CONFIG.TRAIN.LR_POLICY == 'Step':
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=cfg.CONFIG.TRAIN.LR_MILESTONE,
            gamma=cfg.CONFIG.TRAIN.STEP)

    elif cfg.CONFIG.TRAIN.LR_POLICY == 'Cosine':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            T_max=cfg.CONFIG.TRAIN.EPOCH_NUM - cfg.CONFIG.TRAIN.WARMUP_EPOCHS,
            eta_min=0,
            last_epoch=cfg.CONFIG.TRAIN.RESUME_EPOCH)

    elif cfg.CONFIG.TRAIN.LR_POLICY == 'LR_Warmup':
        scheduler = ReduceLROnPlateauWarmup(optimizer,
                                            cfg.CONFIG.TRAIN.WARMUP_EPOCHS,
                                            mode="max",
                                            patience=cfg.CONFIG.TRAIN.PATIENCE,
                                            cooldown=cfg.CONFIG.TRAIN.COOLDOWN)

    else:
        print(
            'Learning rate schedule %s is not supported yet. Please use Step or Cosine.'
        )

    criterion_cycleconsistency = CycleConsistencyCootLoss(num_samples=1,
                                                          use_cuda=True)
    criterion_alignment = MaxMarginRankingLoss(use_cuda=True)

    base_iter = 0
    det_best_field_best = 0
    for epoch in range(cfg.CONFIG.TRAIN.EPOCH_NUM):

        ## ======== Training step ===============
        base_iter = train_coot(cfg, base_iter, model, train_loader, epoch,
                               criterion_alignment, criterion_cycleconsistency,
                               optimizer, writer, logger)

        ## ======= Validation step ================
        if epoch % cfg.CONFIG.VAL.FREQ == 0 or epoch == cfg.CONFIG.TRAIN.EPOCH_NUM - 1:
            vid_metrics, clip_metrics = validate_coot(
                cfg, model, val_loader, epoch, criterion_alignment,
                criterion_cycleconsistency, writer, logger, True)

        # Check if the performance of model is improving
        logger.info("---------- Validating epoch {} ----------".format(epoch))
        c2s_res, s2c_res, clip_best_at_1 = None, None, None
        if clip_metrics is not None:
            c2s_res, s2c_res, clip_best_at_1 = clip_metrics

        # find field which determines is_best
        det_best_field_current = clip_best_at_1

        # check if best
        is_best = compare_metrics(det_best_field_current, det_best_field_best)
        if is_best:
            det_best_field_best = det_best_field_current
            best_epoch = epoch

        # step lr scheduler
        scheduler.step_rop(det_best_field_current, True)
        logger.info(f"ROP: model improved: {is_best}, "
                    f"value {det_best_field_current:.3f},"
                    f"new LR: {optimizer.param_groups[0]['lr']:5.3e}")

        if epoch % cfg.CONFIG.LOG.SAVE_FREQ == 0:
            if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0 or cfg.DDP_CONFIG.DISTRIBUTED == False:
                model.save_model(optimizer, epoch, cfg)

        # check if model did not improve for too long
        term_after = 15
        if epoch - best_epoch > term_after:
            logger.info(f"NO improvements for {term_after} epochs (current "
                        f"{epoch} best {best_epoch}) STOP training.")
            break

    if writer is not None:
        writer.close()
    if logger is not None:
        close_logger(logger)
def main_worker(cfg):
    # create tensorboard and logs
    if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
        tb_logdir = build_log_dir(cfg)
        writer = SummaryWriter(log_dir=tb_logdir)
    else:
        writer = None
    cfg.freeze()

    # create model
    model = get_model(cfg)
    model = deploy_model(model, cfg)

    # create dataset and dataloader
    train_loader, val_loader, train_sampler, val_sampler, mg_sampler = build_dataloader(
        cfg)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=cfg.CONFIG.TRAIN.LR,
                                momentum=cfg.CONFIG.TRAIN.MOMENTUM,
                                weight_decay=cfg.CONFIG.TRAIN.W_DECAY)
    if cfg.CONFIG.MODEL.LOAD:
        model, _ = load_model(model, optimizer, cfg, load_fc=True)

    if cfg.CONFIG.TRAIN.LR_POLICY == 'Step':
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=cfg.CONFIG.TRAIN.LR_MILESTONE,
            gamma=cfg.CONFIG.TRAIN.STEP)
    elif cfg.CONFIG.TRAIN.LR_POLICY == 'Cosine':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            T_max=cfg.CONFIG.TRAIN.EPOCH_NUM - cfg.CONFIG.TRAIN.WARMUP_EPOCHS,
            eta_min=0,
            last_epoch=cfg.CONFIG.TRAIN.RESUME_EPOCH)
    else:
        print(
            'Learning rate schedule %s is not supported yet. Please use Step or Cosine.'
        )

    if cfg.CONFIG.TRAIN.USE_WARMUP:
        scheduler_warmup = GradualWarmupScheduler(
            optimizer,
            multiplier=(cfg.CONFIG.TRAIN.WARMUP_END_LR / cfg.CONFIG.TRAIN.LR),
            total_epoch=cfg.CONFIG.TRAIN.WARMUP_EPOCHS,
            after_scheduler=scheduler)

    criterion = nn.CrossEntropyLoss().cuda()

    base_iter = 0
    for epoch in range(cfg.CONFIG.TRAIN.EPOCH_NUM):
        if cfg.DDP_CONFIG.DISTRIBUTED:
            train_sampler.set_epoch(epoch)

        base_iter = train_classification(base_iter,
                                         model,
                                         train_loader,
                                         epoch,
                                         criterion,
                                         optimizer,
                                         cfg,
                                         writer=writer)
        if cfg.CONFIG.TRAIN.USE_WARMUP:
            scheduler_warmup.step()
        else:
            scheduler.step()

        if cfg.CONFIG.TRAIN.MULTIGRID.USE_LONG_CYCLE:
            if epoch in cfg.CONFIG.TRAIN.MULTIGRID.LONG_CYCLE_EPOCH:
                mg_sampler.step_long_cycle()

        if epoch % cfg.CONFIG.VAL.FREQ == 0 or epoch == cfg.CONFIG.TRAIN.EPOCH_NUM - 1:
            validation_classification(model, val_loader, epoch, criterion, cfg,
                                      writer)

        if epoch % cfg.CONFIG.LOG.SAVE_FREQ == 0:
            if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0 or cfg.DDP_CONFIG.DISTRIBUTED == False:
                save_model(model, optimizer, epoch, cfg)
    if writer is not None:
        writer.close()
Esempio n. 7
0
        video_clip, video_label, video_name = vtuple
        video_clip = torch.unsqueeze(video_clip, dim=0).cuda()
        with torch.no_grad():
            feat = model(video_clip).cpu().numpy()

        feat_file = '%s_%s_feat.npy' % (cfg.CONFIG.MODEL.NAME, video_name)
        np.save(os.path.join(save_path, feat_file), feat)

        if vid > 0 and vid % 10 == 0:
            print('%04d/%04d is done' % (vid, len(val_dataset)))

    end_time = time.time()
    print('Total feature extraction time is %4.2f minutes' %
          ((end_time - start_time) / 60))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Extract video features.')
    parser.add_argument('--config-file', type=str, help='path to config file.')
    args = parser.parse_args()

    cfg = get_cfg_defaults()
    cfg.merge_from_file(args.config_file)
    _ = build_log_dir(cfg)
    save_path = os.path.join(cfg.CONFIG.LOG.BASE_PATH, cfg.CONFIG.LOG.EXP_NAME,
                             cfg.CONFIG.LOG.SAVE_DIR)
    print('Saving extracted features to %s' % save_path)
    cfg.freeze()

    main(cfg, save_path)