def __init__( self, encoder: Seq2SeqEncoder, context_length: Optional[int], prediction_length: int, freq: str, # FIXME: why do we have two parameters here? mlp_final_dim: int = 20, mlp_hidden_dimension_seq: List[int] = list(), quantiles: List[float] = list(), trainer: Trainer = Trainer(), ) -> None: context_length = (prediction_length if context_length is None else context_length) assert all([d > 0 for d in mlp_hidden_dimension_seq ]), "Elements of `mlp_hidden_dimension_seq` should be > 0" decoder = ForkingMLPDecoder( dec_len=prediction_length, final_dim=mlp_final_dim, hidden_dimension_sequence=mlp_hidden_dimension_seq, prefix="decoder_", ) quantile_output = QuantileOutput(quantiles) super(MQDNNEstimator, self).__init__( encoder=encoder, decoder=decoder, quantile_output=quantile_output, freq=freq, prediction_length=prediction_length, context_length=context_length, trainer=trainer, )
def __init__( self, prediction_length: int, freq: str, context_length: Optional[int] = None, decoder_mlp_dim_seq: List[int] = None, trainer: Trainer = Trainer(), quantiles: List[float] = None, scaling: bool = True, ) -> None: assert (prediction_length > 0), f"Invalid prediction length: {prediction_length}." assert decoder_mlp_dim_seq is None or all( d > 0 for d in decoder_mlp_dim_seq ), "Elements of `mlp_hidden_dimension_seq` should be > 0" assert quantiles is None or all( 0 <= d <= 1 for d in quantiles), "Elements of `quantiles` should be >= 0 and <= 1" self.decoder_mlp_dim_seq = (decoder_mlp_dim_seq if decoder_mlp_dim_seq is not None else [30]) self.quantiles = (quantiles if quantiles is not None else [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) # `use_static_feat` and `use_dynamic_feat` always True because network # always receives input; either from the input data or constants encoder = RNNEncoder( mode="gru", hidden_size=50, num_layers=1, bidirectional=True, prefix="encoder_", use_static_feat=True, use_dynamic_feat=True, ) decoder = ForkingMLPDecoder( dec_len=prediction_length, final_dim=self.decoder_mlp_dim_seq[-1], hidden_dimension_sequence=self.decoder_mlp_dim_seq[:-1], prefix="decoder_", ) quantile_output = QuantileOutput(self.quantiles) super().__init__( encoder=encoder, decoder=decoder, quantile_output=quantile_output, freq=freq, prediction_length=prediction_length, context_length=context_length, trainer=trainer, scaling=scaling, )
def __init__( self, freq: str, prediction_length: int, context_length: Optional[int] = None, use_feat_dynamic_real: bool = False, use_feat_static_cat: bool = False, cardinality: List[int] = None, embedding_dimension: List[int] = None, add_time_feature: bool = False, add_age_feature: bool = False, enable_decoder_dynamic_feature: bool = False, seed: Optional[int] = None, decoder_mlp_dim_seq: Optional[List[int]] = None, channels_seq: Optional[List[int]] = None, dilation_seq: Optional[List[int]] = None, kernel_size_seq: Optional[List[int]] = None, use_residual: bool = True, quantiles: Optional[List[float]] = None, trainer: Trainer = Trainer(), scaling: bool = False, ) -> None: assert (prediction_length > 0), f"Invalid prediction length: {prediction_length}." assert decoder_mlp_dim_seq is None or all( d > 0 for d in decoder_mlp_dim_seq ), "Elements of `mlp_hidden_dimension_seq` should be > 0" assert channels_seq is None or all( d > 0 for d in channels_seq), "Elements of `channels_seq` should be > 0" assert dilation_seq is None or all( d > 0 for d in dilation_seq), "Elements of `dilation_seq` should be > 0" # TODO: add support for kernel size=1 assert kernel_size_seq is None or all( d > 1 for d in kernel_size_seq), "Elements of `kernel_size_seq` should be > 0" assert quantiles is None or all( 0 <= d <= 1 for d in quantiles), "Elements of `quantiles` should be >= 0 and <= 1" self.decoder_mlp_dim_seq = (decoder_mlp_dim_seq if decoder_mlp_dim_seq is not None else [30]) self.channels_seq = (channels_seq if channels_seq is not None else [30, 30, 30]) self.dilation_seq = (dilation_seq if dilation_seq is not None else [1, 3, 5]) self.kernel_size_seq = (kernel_size_seq if kernel_size_seq is not None else [7, 3, 3]) self.quantiles = (quantiles if quantiles is not None else [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) assert (len(self.channels_seq) == len(self.dilation_seq) == len( self.kernel_size_seq)), ( f"mismatch CNN configurations: {len(self.channels_seq)} vs. " f"{len(self.dilation_seq)} vs. {len(self.kernel_size_seq)}") if seed: np.random.seed(seed) mx.random.seed(seed) # `use_static_feat` and `use_dynamic_feat` always True because network # always receives input; either from the input data or constants encoder = HierarchicalCausalConv1DEncoder( dilation_seq=self.dilation_seq, kernel_size_seq=self.kernel_size_seq, channels_seq=self.channels_seq, use_residual=use_residual, use_static_feat=True, use_dynamic_feat=True, prefix="encoder_", ) decoder = ForkingMLPDecoder( dec_len=prediction_length, final_dim=self.decoder_mlp_dim_seq[-1], hidden_dimension_sequence=self.decoder_mlp_dim_seq[:-1], prefix="decoder_", ) quantile_output = QuantileOutput(self.quantiles) super().__init__( encoder=encoder, decoder=decoder, quantile_output=quantile_output, freq=freq, prediction_length=prediction_length, context_length=context_length, use_feat_dynamic_real=use_feat_dynamic_real, use_feat_static_cat=use_feat_static_cat, enable_decoder_dynamic_feature=enable_decoder_dynamic_feature, cardinality=cardinality, embedding_dimension=embedding_dimension, add_time_feature=add_time_feature, add_age_feature=add_age_feature, trainer=trainer, scaling=scaling, )