Esempio n. 1
0
def test_neg_binomial(mu_alpha: Tuple[float, float], hybridize: bool) -> None:
    '''
    Test to check that maximizing the likelihood recovers the parameters
    '''
    # test instance
    mu, alpha = mu_alpha

    # generate samples
    mus = mx.nd.zeros((NUM_SAMPLES, )) + mu
    alphas = mx.nd.zeros((NUM_SAMPLES, )) + alpha

    neg_bin_distr = NegativeBinomial(mu=mus, alpha=alphas)
    samples = neg_bin_distr.sample()

    init_biases = [
        inv_softplus(mu - START_TOL_MULTIPLE * TOL * mu),
        inv_softplus(alpha + START_TOL_MULTIPLE * TOL * alpha),
    ]

    mu_hat, alpha_hat = maximum_likelihood_estimate_sgd(
        NegativeBinomialOutput(),
        samples,
        hybridize=hybridize,
        init_biases=init_biases,
        num_epochs=PositiveInt(15),
    )

    assert (np.abs(mu_hat - mu) <
            TOL * mu), f"mu did not match: mu = {mu}, mu_hat = {mu_hat}"
    assert (np.abs(alpha_hat - alpha) < TOL * alpha
            ), f"alpha did not match: alpha = {alpha}, alpha_hat = {alpha_hat}"
Esempio n. 2
0
 (Dirichlet(alpha=mx.nd.ones(shape=(3, 4, 5))), (3, 4), (5, )),
 (
     DirichletMultinomial(
         dim=5, n_trials=9, alpha=mx.nd.ones(shape=(3, 4, 5))),
     (3, 4),
     (5, ),
 ),
 (
     Laplace(mu=mx.nd.zeros(shape=(3, 4, 5)),
             b=mx.nd.ones(shape=(3, 4, 5))),
     (3, 4, 5),
     (),
 ),
 (
     NegativeBinomial(
         mu=mx.nd.zeros(shape=(3, 4, 5)),
         alpha=mx.nd.ones(shape=(3, 4, 5)),
     ),
     (3, 4, 5),
     (),
 ),
 (
     Uniform(
         low=-mx.nd.ones(shape=(3, 4, 5)),
         high=mx.nd.ones(shape=(3, 4, 5)),
     ),
     (3, 4, 5),
     (),
 ),
 (
     PiecewiseLinear(
         gamma=mx.nd.ones(shape=(3, 4, 5)),
Esempio n. 3
0
 ),
 Beta(
     alpha=0.5 * mx.nd.ones(shape=BATCH_SHAPE),
     beta=0.5 * mx.nd.ones(shape=BATCH_SHAPE),
 ),
 StudentT(
     mu=mx.nd.zeros(shape=BATCH_SHAPE),
     sigma=mx.nd.ones(shape=BATCH_SHAPE),
     nu=mx.nd.ones(shape=BATCH_SHAPE),
 ),
 Dirichlet(alpha=mx.nd.ones(shape=BATCH_SHAPE)),
 Laplace(
     mu=mx.nd.zeros(shape=BATCH_SHAPE), b=mx.nd.ones(shape=BATCH_SHAPE)
 ),
 NegativeBinomial(
     mu=mx.nd.zeros(shape=BATCH_SHAPE),
     alpha=mx.nd.ones(shape=BATCH_SHAPE),
 ),
 Poisson(rate=mx.nd.ones(shape=BATCH_SHAPE)),
 Uniform(
     low=-mx.nd.ones(shape=BATCH_SHAPE),
     high=mx.nd.ones(shape=BATCH_SHAPE),
 ),
 PiecewiseLinear(
     gamma=mx.nd.ones(shape=BATCH_SHAPE),
     slopes=mx.nd.ones(shape=(3, 4, 5, 10)),
     knot_spacings=mx.nd.ones(shape=(3, 4, 5, 10)) / 10,
 ),
 MixtureDistribution(
     mixture_probs=mx.nd.stack(
         0.2 * mx.nd.ones(shape=BATCH_SHAPE),
         0.8 * mx.nd.ones(shape=BATCH_SHAPE),