Esempio n. 1
0
def LocalTabularPredictor(*args, **kwargs) -> Localizer:
    """
    A predictor that trains an ad-hoc model for each time series that it is
    given to predict.

    The constructor arguments are the same as for ``TabularEstimator``.
    """
    return Localizer(TabularEstimator(*args, **kwargs))
Esempio n. 2
0
def test_localizer():
    dataset = ListDataset(
        data_iter=[{
            "start": "2012-01-01",
            "target": (np.zeros(20) + i * 0.1 + 0.01),
            "id": f"{i}",
        } for i in range(3)],
        freq="1H",
    )

    estimator = MeanEstimator(prediction_length=10, freq="1H", num_samples=50)

    local_pred = Localizer(estimator=estimator)
    agg_metrics, _ = backtest_metrics(test_dataset=dataset,
                                      predictor=local_pred)
Esempio n. 3
0
def test_localizer():
    dataset = ListDataset(
        data_iter=[{
            'start': '2012-01-01',
            'target': (np.zeros(20) + i * 0.1 + 0.01),
            'id': f'{i}',
        } for i in range(3)],
        freq='1H',
    )

    estimator = MeanEstimator(prediction_length=10, freq='1H', num_samples=50)

    local_pred = Localizer(estimator=estimator)
    agg_metrics, _ = backtest_metrics(train_dataset=None,
                                      test_dataset=dataset,
                                      forecaster=local_pred)
Esempio n. 4
0
def LocalTabularPredictor(*args, **kwargs) -> Localizer:
    return Localizer(TabularEstimator(*args, **kwargs))