Esempio n. 1
0
 def create_transformation(self) -> Transformation:
     return Chain([
         AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
         AddTimeFeatures(
             start_field=FieldName.START,
             target_field=FieldName.TARGET,
             output_field=FieldName.FEAT_TIME,
             time_features=self.time_features,
             pred_length=self.prediction_length,
         ),
         SetFieldIfNotPresent(field=FieldName.FEAT_STATIC_CAT, value=[0.0]),
         AsNumpyArray(field=transform.FieldName.FEAT_STATIC_CAT,
                      expected_ndim=1),
         CanonicalInstanceSplitter(
             target_field=FieldName.TARGET,
             is_pad_field=FieldName.IS_PAD,
             start_field=FieldName.START,
             forecast_start_field=FieldName.FORECAST_START,
             instance_sampler=TestSplitSampler(),
             time_series_fields=[FieldName.FEAT_TIME],
             instance_length=self.context_length,
             use_prediction_features=True,
             prediction_length=self.prediction_length,
         ),
     ])
Esempio n. 2
0
    def _create_instance_splitter(self, mode: str):
        assert mode in ["training", "validation", "test"]

        return CanonicalInstanceSplitter(
            target_field=FieldName.TARGET,
            is_pad_field=FieldName.IS_PAD,
            start_field=FieldName.START,
            forecast_start_field=FieldName.FORECAST_START,
            instance_sampler=TestSplitSampler(),
            time_series_fields=[FieldName.FEAT_TIME],
            instance_length=self.context_length,
            use_prediction_features=(mode is not "training"),
            prediction_length=self.prediction_length,
        )
Esempio n. 3
0
    def _create_instance_splitter(self, mode: str):
        assert mode in ["training", "validation", "test"]

        return CanonicalInstanceSplitter(
            target_field=FieldName.TARGET,
            is_pad_field=FieldName.IS_PAD,
            start_field=FieldName.START,
            forecast_start_field=FieldName.FORECAST_START,
            instance_sampler=TestSplitSampler(),
            time_series_fields=[
                FieldName.FEAT_TIME,
                SEASON_INDICATORS_FIELD,
                FieldName.OBSERVED_VALUES,
            ],
            allow_target_padding=True,
            instance_length=self.past_length,
            use_prediction_features=(mode != "training"),
            prediction_length=self.prediction_length,
        )
Esempio n. 4
0
    def create_transformation(self) -> Transformation:
        remove_field_names = [
            FieldName.FEAT_DYNAMIC_CAT,
            FieldName.FEAT_STATIC_REAL,
        ]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

        return Chain(
            [RemoveFields(field_names=remove_field_names)]
            + (
                [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
                if not self.use_feat_static_cat
                else []
            )
            + [
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                # gives target the (1, T) layout
                ExpandDimArray(field=FieldName.TARGET, axis=0),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                # Unnormalized seasonal features
                AddTimeFeatures(
                    time_features=CompositeISSM.seasonal_features(self.freq),
                    pred_length=self.prediction_length,
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=SEASON_INDICATORS_FIELD,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                    + (
                        [FieldName.FEAT_DYNAMIC_REAL]
                        if self.use_feat_dynamic_real
                        else []
                    ),
                ),
                CanonicalInstanceSplitter(
                    target_field=FieldName.TARGET,
                    is_pad_field=FieldName.IS_PAD,
                    start_field=FieldName.START,
                    forecast_start_field=FieldName.FORECAST_START,
                    instance_sampler=TestSplitSampler(),
                    time_series_fields=[
                        FieldName.FEAT_TIME,
                        SEASON_INDICATORS_FIELD,
                        FieldName.OBSERVED_VALUES,
                    ],
                    allow_target_padding=True,
                    instance_length=self.past_length,
                    use_prediction_features=True,
                    prediction_length=self.prediction_length,
                ),
            ]
        )
def create_input_transform(
    is_train,
    prediction_length,
    past_length,
    use_feat_static_cat,
    use_feat_dynamic_real,
    freq,
    time_features,
    extract_tail_chunks_for_train: bool = False,
):
    SEASON_INDICATORS_FIELD = "seasonal_indicators"
    remove_field_names = [
        FieldName.FEAT_DYNAMIC_CAT,
        FieldName.FEAT_STATIC_REAL,
    ]
    if not use_feat_dynamic_real:
        remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

    time_features = (
        time_features
        if time_features is not None
        else time_features_from_frequency_str(freq)
    )

    transform = Chain(
        [RemoveFields(field_names=remove_field_names)]
        + (
            [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
            if not use_feat_static_cat
            else []
        )
        + [
            AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
            AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
            # gives target the (1, T) layout
            ExpandDimArray(field=FieldName.TARGET, axis=0),
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            # Unnormalized seasonal features
            AddTimeFeatures(
                time_features=CompositeISSM.seasonal_features(freq),
                pred_length=prediction_length,
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=SEASON_INDICATORS_FIELD,
            ),
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=time_features,
                pred_length=prediction_length,
            ),
            AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_AGE,
                pred_length=prediction_length,
                log_scale=True,
            ),
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                + (
                    [FieldName.FEAT_DYNAMIC_REAL]
                    if use_feat_dynamic_real
                    else []
                ),
            ),
            CanonicalInstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                instance_sampler=ExpectedNumInstanceSampler(num_instances=1),
                time_series_fields=[
                    FieldName.FEAT_TIME,
                    SEASON_INDICATORS_FIELD,
                    FieldName.OBSERVED_VALUES,
                ],
                allow_target_padding=True,
                instance_length=past_length,
                use_prediction_features=True,
                prediction_length=prediction_length,
            )
            if (is_train and not extract_tail_chunks_for_train)
            else CanonicalInstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                instance_sampler=TestSplitSampler(),
                time_series_fields=[
                    FieldName.FEAT_TIME,
                    SEASON_INDICATORS_FIELD,
                    FieldName.OBSERVED_VALUES,
                ],
                allow_target_padding=True,
                instance_length=past_length,
                use_prediction_features=True,
                prediction_length=prediction_length,
            ),
        ]
    )
    return transform