Esempio n. 1
0
def main(args):
    hl.init(log='/frequency_data_generation.log', default_reference='GRCh38')

    logger.info("Reading sparse MT and metadata table...")
    mt = get_gnomad_v3_mt(key_by_locus_and_alleles=True)
    meta_ht = meta.ht().select('pop', 'sex', 'project_id', 'release', 'sample_filters')

    if args.test:
        logger.info("Filtering to chr20:1-1000000")
        mt = hl.filter_intervals(mt, [hl.parse_locus_interval('chr20:1-1000000')])

    mt = hl.experimental.sparse_split_multi(mt, filter_changed_loci=True)

    logger.info("Annotating sparse MT with metadata...")
    mt = mt.annotate_cols(meta=meta_ht[mt.s])
    mt = mt.filter_cols(mt.meta.release)
    samples = mt.count_cols()
    logger.info(f"Running frequency table prep and generation pipeline on {samples} samples")

    logger.info("Computing adj and sex adjusted genotypes.")
    mt = mt.annotate_entries(
        GT=adjusted_sex_ploidy_expr(mt.locus, mt.GT, mt.meta.sex),
        adj=get_adj_expr(mt.GT, mt.GQ, mt.DP, mt.AD)
    )

    logger.info("Densify-ing...")
    mt = hl.experimental.densify(mt)
    mt = mt.filter_rows(hl.len(mt.alleles) > 1)

    logger.info("Generating frequency data...")
    mt = annotate_freq(
        mt,
        sex_expr=mt.meta.sex,
        pop_expr=mt.meta.pop
    )

    # Select freq, FAF and popmax
    faf, faf_meta = faf_expr(mt.freq, mt.freq_meta, mt.locus, POPS_TO_REMOVE_FOR_POPMAX)
    mt = mt.select_rows(
        'freq',
        faf=faf,
        popmax=pop_max_expr(mt.freq, mt.freq_meta, POPS_TO_REMOVE_FOR_POPMAX)
    )
    mt = mt.annotate_globals(faf_meta=faf_meta)

    # Annotate quality metrics histograms, as these also require densifying
    mt = mt.annotate_rows(
        **qual_hist_expr(mt.GT, mt.GQ, mt.DP, mt.AD)
    )

    logger.info("Writing out frequency data...")
    if args.test:
        mt.rows().write("gs://gnomad-tmp/gnomad_freq/chr20_1_1000000_freq.ht", overwrite=True)
    else:
        mt.rows().write(freq.path, overwrite=args.overwrite)
Esempio n. 2
0
def main(args):
    hl.init(log='/frequency_data_generation.log', default_reference='GRCh38')

    logger.info("Reading sparse MT and metadata table...")
    mt = get_gnomad_v3_mt(key_by_locus_and_alleles=True)
    meta_ht = meta.ht().select('pop', 'sex', 'project_id', 'release', 'sample_filters')

    if args.test:
        logger.info("Filtering to chr20:1-1000000")
        mt = hl.filter_intervals(mt, [hl.parse_locus_interval('chr20:1-1000000')])

    mt = hl.experimental.sparse_split_multi(mt, filter_changed_loci=True)

    logger.info("Annotating sparse MT with metadata...")
    mt = mt.annotate_cols(meta=meta_ht[mt.s])
    mt = mt.filter_cols(mt.meta.release)
    samples = mt.count_cols()
    logger.info(f"Running frequency table prep and generation pipeline on {samples} samples")

    logger.info("Computing adj and sex adjusted genotypes.")
    mt = mt.annotate_entries(
        GT=adjusted_sex_ploidy_expr(mt.locus, mt.GT, mt.meta.sex),
        adj=get_adj_expr(mt.GT, mt.GQ, mt.DP, mt.AD)
    )

    logger.info("Densify-ing...")
    mt = hl.experimental.densify(mt)
    mt = mt.filter_rows(hl.len(mt.alleles) > 1)

    logger.info("Setting het genotypes at sites with >1% AF (using v3.0 frequencies) and > 0.9 AB to homalt...")
    # hotfix for depletion of homozygous alternate genotypes
    # Using v3.0 AF to avoid an extra frequency calculation
    # TODO: Using previous callset AF works for small incremental changes to a callset, but we need to revisit for large increments
    freq_ht = freq.versions["3"].ht()
    freq_ht = freq_ht.select(AF=freq_ht.freq[0].AF)

    mt = mt.annotate_entries(
        GT=hl.cond(
            (freq_ht[mt.row_key].AF > 0.01)
            & mt.GT.is_het()
            & (mt.AD[1] / mt.DP > 0.9),
            hl.call(1, 1),
            mt.GT,
        )
    )

    logger.info("Calculating InbreedingCoefficient...")
    # NOTE: This is not the ideal location to calculate this, but added here to avoid another densify
    mt = mt.annotate_rows(InbreedingCoeff=bi_allelic_site_inbreeding_expr(mt.GT))

    logger.info("Generating frequency data...")
    mt = annotate_freq(
        mt,
        sex_expr=mt.meta.sex,
        pop_expr=mt.meta.pop
    )

    # Select freq, FAF and popmax
    faf, faf_meta = faf_expr(mt.freq, mt.freq_meta, mt.locus, POPS_TO_REMOVE_FOR_POPMAX)
    mt = mt.select_rows(
        'InbreedingCoeff',
        'freq',
        faf=faf,
        popmax=pop_max_expr(mt.freq, mt.freq_meta, POPS_TO_REMOVE_FOR_POPMAX)
    )
    mt = mt.annotate_globals(faf_meta=faf_meta)

    # Annotate quality metrics histograms, as these also require densifying
    mt = mt.annotate_rows(
        **qual_hist_expr(mt.GT, mt.GQ, mt.DP, mt.AD)
    )

    logger.info("Writing out frequency data...")
    if args.test:
        mt.rows().write("gs://gnomad-tmp/gnomad_freq/chr20_1_1000000_freq.ht", overwrite=True)
    else:
        mt.rows().write(freq.path, overwrite=args.overwrite)
Esempio n. 3
0
def main(args):
    subsets = args.subsets
    hl.init(
        log=
        f"/generate_frequency_data{'.' + '_'.join(subsets) if subsets else ''}.log",
        default_reference="GRCh38",
    )

    invalid_subsets = []
    n_subsets_use_subpops = 0
    for s in subsets:
        if s not in SUBSETS:
            invalid_subsets.append(s)
        if s in COHORTS_WITH_POP_STORED_AS_SUBPOP:
            n_subsets_use_subpops += 1

    if invalid_subsets:
        raise ValueError(
            f"{', '.join(invalid_subsets)} subset(s) are not one of the following official subsets: {SUBSETS}"
        )
    if n_subsets_use_subpops & (n_subsets_use_subpops != len(subsets)):
        raise ValueError(
            f"All or none of the supplied subset(s) should be in the list of cohorts that need to use subpops instead "
            f"of pops in frequency calculations: {COHORTS_WITH_POP_STORED_AS_SUBPOP}"
        )

    try:
        logger.info("Reading full sparse MT and metadata table...")
        mt = get_gnomad_v3_mt(
            key_by_locus_and_alleles=True,
            release_only=not args.include_non_release,
            samples_meta=True,
        )

        if args.test:
            logger.info("Filtering to two partitions on chr20")
            mt = hl.filter_intervals(
                mt, [hl.parse_locus_interval("chr20:1-1000000")])
            mt = mt._filter_partitions(range(2))

        mt = hl.experimental.sparse_split_multi(mt, filter_changed_loci=True)

        if args.include_non_release:
            logger.info("Filtering MT columns to high quality samples")
            total_sample_count = mt.count_cols()
            mt = mt.filter_cols(mt.meta.high_quality)
            high_quality_sample_count = mt.count_cols()
            logger.info(
                f"Filtered {total_sample_count - high_quality_sample_count} from the full set of {total_sample_count} "
                f"samples...")

        if subsets:
            mt = mt.filter_cols(hl.any([mt.meta.subsets[s] for s in subsets]))
            logger.info(
                f"Running frequency generation pipeline on {mt.count_cols()} samples in {', '.join(subsets)} subset(s)..."
            )
        else:
            logger.info(
                f"Running frequency generation pipeline on {mt.count_cols()} samples..."
            )

        logger.info("Computing adj and sex adjusted genotypes...")
        mt = mt.annotate_entries(
            GT=adjusted_sex_ploidy_expr(mt.locus, mt.GT,
                                        mt.meta.sex_imputation.sex_karyotype),
            adj=get_adj_expr(mt.GT, mt.GQ, mt.DP, mt.AD),
        )

        logger.info("Densify-ing...")
        mt = hl.experimental.densify(mt)
        mt = mt.filter_rows(hl.len(mt.alleles) > 1)

        # Temporary hotfix for depletion of homozygous alternate genotypes
        logger.info(
            "Setting het genotypes at sites with >1% AF (using v3.0 frequencies) and > 0.9 AB to homalt..."
        )
        # Load v3.0 allele frequencies to avoid an extra frequency calculation
        # NOTE: Using previous callset AF works for small incremental changes to a callset, but we will need to revisit for large increments
        freq_ht = get_freq(version="3").ht()
        freq_ht = freq_ht.select(AF=freq_ht.freq[0].AF)

        mt = mt.annotate_entries(GT=hl.cond(
            (freq_ht[mt.row_key].AF > 0.01)
            & mt.GT.is_het()
            & (mt.AD[1] / mt.DP > 0.9),
            hl.call(1, 1),
            mt.GT,
        ))

        logger.info("Generating frequency data...")
        if subsets:
            mt = annotate_freq(
                mt,
                sex_expr=mt.meta.sex_imputation.sex_karyotype,
                pop_expr=mt.meta.population_inference.pop
                if not n_subsets_use_subpops else
                mt.meta.project_meta.project_subpop,
                # NOTE: TGP and HGDP labeled populations are highly specific and are stored in the project_subpop meta field
            )

            # NOTE: no FAFs or popmax needed for subsets
            mt = mt.select_rows("freq")

            logger.info(
                f"Writing out frequency data for {', '.join(subsets)} subset(s)..."
            )
            if args.test:
                mt.rows().write(
                    get_checkpoint_path(
                        f"chr20_test_freq.{'_'.join(subsets)}"),
                    overwrite=True,
                )
            else:
                mt.rows().write(get_freq(subset="_".join(subsets)).path,
                                overwrite=args.overwrite)

        else:
            logger.info("Computing age histograms for each variant...")
            mt = mt.annotate_cols(age=hl.if_else(
                hl.is_defined(mt.meta.project_meta.age),
                mt.meta.project_meta.age,
                mt.meta.project_meta.age_alt,
                # NOTE: most age data is stored as integers in 'age' annotation, but for a select number of samples, age is stored as a bin range and 'age_alt' corresponds to an integer in the middle of the bin
            ))
            mt = mt.annotate_rows(**age_hists_expr(mt.adj, mt.GT, mt.age))

            # Compute callset-wide age histogram global
            mt = mt.annotate_globals(age_distribution=mt.aggregate_cols(
                hl.agg.hist(mt.age, 30, 80, 10)))

            mt = annotate_freq(
                mt,
                sex_expr=mt.meta.sex_imputation.sex_karyotype,
                pop_expr=mt.meta.population_inference.pop,
                downsamplings=DOWNSAMPLINGS,
            )
            # Remove all loci with raw AC=0
            mt = mt.filter_rows(mt.freq[1].AC > 0)

            logger.info("Calculating InbreedingCoeff...")
            # NOTE: This is not the ideal location to calculate this, but added here to avoid another densify
            mt = mt.annotate_rows(
                InbreedingCoeff=bi_allelic_site_inbreeding_expr(mt.GT))

            logger.info("Computing filtering allele frequencies and popmax...")
            faf, faf_meta = faf_expr(mt.freq, mt.freq_meta, mt.locus,
                                     POPS_TO_REMOVE_FOR_POPMAX)
            mt = mt.select_rows(
                "InbreedingCoeff",
                "freq",
                faf=faf,
                popmax=pop_max_expr(mt.freq, mt.freq_meta,
                                    POPS_TO_REMOVE_FOR_POPMAX),
            )
            mt = mt.annotate_globals(
                faf_meta=faf_meta,
                faf_index_dict=make_faf_index_dict(faf_meta))
            mt = mt.annotate_rows(popmax=mt.popmax.annotate(
                faf95=mt.faf[mt.faf_meta.index(
                    lambda x: x.values() == ["adj", mt.popmax.pop])].faf95))

            logger.info("Annotating quality metrics histograms...")
            # NOTE: these are performed here as the quality metrics histograms also require densifying
            mt = mt.annotate_rows(
                qual_hists=qual_hist_expr(mt.GT, mt.GQ, mt.DP, mt.AD, mt.adj))
            ht = mt.rows()
            ht = ht.annotate(
                qual_hists=hl.Struct(
                    **{
                        i.replace("_adj", ""): ht.qual_hists[i]
                        for i in ht.qual_hists if "_adj" in i
                    }),
                raw_qual_hists=hl.Struct(**{
                    i: ht.qual_hists[i]
                    for i in ht.qual_hists if "_adj" not in i
                }),
            )

            logger.info("Writing out frequency data...")
            if args.test:
                ht.write(get_checkpoint_path("chr20_test_freq"),
                         overwrite=True)
            else:
                ht.write(get_freq().path, overwrite=args.overwrite)

    finally:
        logger.info("Copying hail log to logging bucket...")
        hl.copy_log(f"{qc_temp_prefix()}logs/")
def generate_frequency_data(
        mt: hl.MatrixTable,
        calculate_downsampling: bool = False,
        calculate_by_platform: bool = False) -> Tuple[hl.Table, hl.Table]:
    """
    :param MatrixTable mt: Input MatrixTable
    :param bool calculate_downsampling: Calculate frequencies for downsampled data
    :param bool calculate_by_platform: Calculate frequencies for PCR-free data
    """
    if calculate_downsampling:
        mt, downsamplings = generate_downsamplings_cumulative(mt)
        print(f'Got {len(downsamplings)} downsamplings: {downsamplings}')
    cut_dict = {
        'pop':
        hl.agg.filter(hl.is_defined(mt.meta.pop), hl.agg.counter(mt.meta.pop)),
        'sex':
        hl.agg.filter(hl.is_defined(mt.meta.sex),
                      hl.agg.collect_as_set(mt.meta.sex)),
        'subpop':
        hl.agg.filter(
            hl.is_defined(mt.meta.subpop) & hl.is_defined(mt.meta.pop),
            hl.agg.collect_as_set(
                hl.struct(subpop=mt.meta.subpop, pop=mt.meta.pop)))
    }
    if calculate_by_platform:
        cut_dict['platform'] = hl.agg.filter(
            hl.is_defined(mt.meta.qc_platform),
            hl.agg.collect_as_set(mt.meta.qc_platform))
    cut_data = mt.aggregate_cols(hl.struct(**cut_dict))

    sample_group_filters = [({}, True)]
    sample_group_filters.extend([({
        'pop': pop
    }, mt.meta.pop == pop) for pop in cut_data.pop] + [({
        'sex': sex
    }, mt.meta.sex == sex) for sex in cut_data.sex] +
                                [({
                                    'pop': pop,
                                    'sex': sex
                                }, (mt.meta.sex == sex) & (mt.meta.pop == pop))
                                 for sex in cut_data.sex
                                 for pop in cut_data.pop] +
                                [({
                                    'subpop': subpop.subpop,
                                    'pop': subpop.pop
                                }, mt.meta.subpop == subpop.subpop)
                                 for subpop in cut_data.subpop])

    if calculate_by_platform:
        sample_group_filters.extend([({
            'platform': str(platform)
        }, mt.meta.qc_platform == platform) for platform in cut_data.platform])

    if calculate_downsampling:
        sample_group_filters.extend([({
            'downsampling': str(ds),
            'pop': 'global'
        }, mt.downsampling.global_idx < ds) for ds in downsamplings])
        sample_group_filters.extend([
            ({
                'downsampling': str(ds),
                'pop': pop
            }, (mt.downsampling.pop_idx < ds) & (mt.meta.pop == pop))
            for ds in downsamplings for pop, pop_count in cut_data.pop.items()
            if ds <= pop_count
        ])
    mt = mt.select_cols(group_membership=tuple(x[1]
                                               for x in sample_group_filters),
                        project_id=mt.meta.project_id,
                        age=mt.meta.age)
    mt = mt.select_rows()

    frequency_expression = []
    meta_expressions = []
    for i in range(len(sample_group_filters)):
        subgroup_dict = sample_group_filters[i][0]
        subgroup_dict['group'] = 'adj'
        call_stats = hl.agg.filter(mt.group_membership[i] & mt.adj,
                                   hl.agg.call_stats(mt.GT, mt.alleles))
        call_stats_bind = hl.bind(
            lambda cs: cs.annotate(AC=cs.AC[1],
                                   AF=cs.AF[1],
                                   homozygote_count=cs.homozygote_count[1]),
            call_stats)
        frequency_expression.append(call_stats_bind)
        meta_expressions.append(subgroup_dict)

    raw_stats = hl.agg.call_stats(mt.GT, mt.alleles)
    raw_stats_bind = hl.bind(
        lambda cs: cs.annotate(
            AC=cs.AC[1], AF=cs.AF[1], homozygote_count=cs.homozygote_count[1]),
        raw_stats)
    frequency_expression.insert(1, raw_stats_bind)
    meta_expressions.insert(1, {'group': 'raw'})

    print(f'Calculating {len(frequency_expression)} aggregators...')
    global_expression = {'freq_meta': meta_expressions}
    mt = mt.annotate_rows(
        freq=frequency_expression,
        age_hist_het=hl.agg.filter(mt.adj & mt.GT.is_het(),
                                   hl.agg.hist(mt.age, 30, 80, 10)),
        age_hist_hom=hl.agg.filter(mt.adj & mt.GT.is_hom_var(),
                                   hl.agg.hist(mt.age, 30, 80, 10)))
    if calculate_downsampling:
        global_expression['downsamplings'] = downsamplings
    mt = mt.annotate_globals(**global_expression)
    sample_data = mt.cols()

    pops = set(cut_data.pop.keys())
    [pops.discard(x) for x in POPS_TO_REMOVE_FOR_POPMAX]

    mt = mt.annotate_rows(
        popmax=pop_max_expr(mt.freq,
                            mt.freq_meta,
                            pops_to_exclude=set(POPS_TO_REMOVE_FOR_POPMAX)),
        faf=add_faf_expr(mt.freq, mt.freq_meta, mt.locus, populations=pops),
        project_max=project_max_expr(mt.project_id, mt.GT, mt.alleles))

    return mt.rows(), sample_data