Esempio n. 1
0
def test_csv_response_generation(json_input, csv_output):
    """ tests if generated csv is consistant with expected generation
        same columns (order not important)
    """
    with open(json_input) as jsonfile:
        json_data = load(jsonfile)
    equipment = load_equipment(eqpt_filename)
    csv_filename = str(csv_output)+'.csv'
    with open(csv_filename, 'w', encoding='utf-8') as fcsv:
        jsontocsv(json_data, equipment, fcsv)

    expected_csv_filename = str(csv_output)+'_expected.csv'

    # expected header
    # csv_header = \
    # [
    #  'response-id',
    #  'source',
    #  'destination',
    #  'path_bandwidth',
    #  'Pass?',
    #  'nb of tsp pairs',
    #  'total cost',
    #  'transponder-type',
    #  'transponder-mode',
    #  'OSNR-0.1nm',
    #  'SNR-0.1nm',
    #  'SNR-bandwidth',
    #  'baud rate (Gbaud)',
    #  'input power (dBm)',
    #  'path'
    # ]

    resp = read_csv(csv_filename)
    unlink(csv_filename)
    expected_resp = read_csv(expected_csv_filename)
    resp_header = list(resp.head(0))
    expected_resp_header = list(expected_resp.head(0))
    # check that headers are the same
    resp_header.sort()
    expected_resp_header.sort()
    print('headers are differents')
    print(resp_header)
    print(expected_resp_header)
    assert resp_header == expected_resp_header

    # for each header checks that the output are as expected
    resp.sort_values(by=['response-id'])
    expected_resp.sort_values(by=['response-id'])

    for column in expected_resp:
        assert list(resp[column].fillna('')) == list(expected_resp[column].fillna(''))
        print('results are different')
        print(list(resp[column]))
        print(list(expected_resp[column]))
        print(type(list(resp[column])[-1]))
Esempio n. 2
0
def launch_cli(network, data, equipment):
    """ Compute requests using network, data and equipment with client line interface
    """
    propagatedpths, reversed_propagatedpths, rqs = compute_requests(
        network, data, equipment)
    #Generate the output
    if ARGS.output:
        result = []
        # assumes that list of rqs and list of propgatedpths have same order
        for i, pth in enumerate(propagatedpths):
            result.append(
                Result_element(rqs[i], pth, reversed_propagatedpths[i]))
        temp = path_result_json(result)
        fnamecsv = f'{str(ARGS.output)[0:len(str(ARGS.output))-len(str(ARGS.output.suffix))]}.csv'
        fnamejson = f'{str(ARGS.output)[0:len(str(ARGS.output))-len(str(ARGS.output.suffix))]}.json'
        with open(fnamejson, 'w', encoding='utf-8') as fjson:
            fjson.write(
                dumps(path_result_json(result), indent=2, ensure_ascii=False))
            with open(fnamecsv, "w", encoding='utf-8') as fcsv:
                jsontocsv(temp, equipment, fcsv)
                print('\x1b[1;34;40m' +
                      f'saving in {ARGS.output} and {fnamecsv}' + '\x1b[0m')
Esempio n. 3
0
Reads JSON path result file in accordance with the Yang model for requesting
path computation and writes results to a CSV file.

See: draft-ietf-teas-yang-path-computation-01.txt
"""

from argparse import ArgumentParser
from pathlib import Path
from json import loads
from gnpy.core.equipment  import load_equipment
from gnpy.core.request  import jsontocsv


parser = ArgumentParser(description = 'A function that writes json path results in an excel sheet.')
parser.add_argument('filename', nargs='?', type = Path)
parser.add_argument('output_filename', nargs='?', type = Path)
parser.add_argument('eqpt_filename', nargs='?', type = Path, default=Path(__file__).parent / 'eqpt_config.json')

if __name__ == '__main__':
    args = parser.parse_args()

    with open(args.output_filename, 'w', encoding='utf-8') as file:
        with open(args.filename, encoding='utf-8') as f:
            print(f'Reading {args.filename}')
            json_data = loads(f.read())
            equipment = load_equipment(args.eqpt_filename)
            print(f'Writing in {args.output_filename}')
            jsontocsv(json_data,equipment,file)

Esempio n. 4
0
            line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', f'{round(mean(p[-1].snr),2)}',\
                f'{round(mean(p[-1].snr+lin2db(rqs[i].baud_rate/(12.5e9))),2)}',\
                f'{rqs[i].OSNR}', f'{rqs[i].tsp_mode}' , f'{round(rqs[i].path_bandwidth * 1e-9,2)}' , f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }']
        else:
            line = [f'{rqs[i].request_id}',f' {rqs[i].source} to {rqs[i].destination} : not feasible ']
        data.append(line)

    col_width = max(len(word) for row in data for word in row[2:])   # padding
    firstcol_width = max(len(row[0]) for row in data )   # padding
    secondcol_width = max(len(row[1]) for row in data )   # padding
    for row in data:
        firstcol = ''.join(row[0].ljust(firstcol_width))
        secondcol = ''.join(row[1].ljust(secondcol_width))
        remainingcols = ''.join(word.center(col_width,' ') for word in row[2:])
        print(f'{firstcol} {secondcol} {remainingcols}')


    if args.output :
        result = []
        # assumes that list of rqs and list of propgatedpths have same order
        for i,p in enumerate(propagatedpths):
            result.append(Result_element(rqs[i],p))
        temp = path_result_json(result)
        fnamecsv = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.csv'
        fnamejson = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.json'
        with open(fnamejson, 'w', encoding='utf-8') as f:
            f.write(dumps(path_result_json(result), indent=2, ensure_ascii=False))
            with open(fnamecsv,"w", encoding='utf-8') as fcsv :
                jsontocsv(temp,equipment,fcsv)
                print('\x1b[1;34;40m'+f'saving in {args.output} and {fnamecsv}'+ '\x1b[0m')
Esempio n. 5
0
def main(args):
    """ main function that calls all functions
    """
    LOGGER.info(
        f'Computing path requests {args.service_filename} into JSON format')
    print('\x1b[1;34;40m' +\
          f'Computing path requests {args.service_filename} into JSON format'+ '\x1b[0m')
    # for debug
    # print( args.eqpt_filename)

    try:
        data = load_requests(args.service_filename, args.eqpt_filename,
                             args.bidir)
        equipment = load_equipment(args.eqpt_filename)
        network = load_network(args.network_filename, equipment)
    except EquipmentConfigError as this_e:
        print(
            f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {this_e}'
        )
        exit(1)
    except NetworkTopologyError as this_e:
        print(
            f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {this_e}'
        )
        exit(1)
    except ConfigurationError as this_e:
        print(
            f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {this_e}'
        )
        exit(1)
    except ServiceError as this_e:
        print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
        exit(1)

    # Build the network once using the default power defined in SI in eqpt config
    # TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
    # spacing, f_min and f_max
    p_db = equipment['SI']['default'].power_dbm

    p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
        equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
    build_network(network, equipment, p_db, p_total_db)
    save_network(args.network_filename, network)

    oms_list = build_oms_list(network, equipment)

    try:
        rqs = requests_from_json(data, equipment)
    except ServiceError as this_e:
        print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
        exit(1)
    # check that request ids are unique. Non unique ids, may
    # mess the computation: better to stop the computation
    all_ids = [r.request_id for r in rqs]
    if len(all_ids) != len(set(all_ids)):
        for item in list(set(all_ids)):
            all_ids.remove(item)
        msg = f'Requests id {all_ids} are not unique'
        LOGGER.critical(msg)
        exit()
    try:
        rqs = correct_route_list(network, rqs)
    except ServiceError as this_e:
        print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
        exit(1)
    # pths = compute_path(network, equipment, rqs)
    dsjn = disjunctions_from_json(data)

    print('\x1b[1;34;40m' + f'List of disjunctions' + '\x1b[0m')
    print(dsjn)
    # need to warn or correct in case of wrong disjunction form
    # disjunction must not be repeated with same or different ids
    dsjn = correct_disjn(dsjn)

    # Aggregate demands with same exact constraints
    print('\x1b[1;34;40m' + f'Aggregating similar requests' + '\x1b[0m')

    rqs, dsjn = requests_aggregation(rqs, dsjn)
    # TODO export novel set of aggregated demands in a json file

    print('\x1b[1;34;40m' + 'The following services have been requested:' +
          '\x1b[0m')
    print(rqs)

    print('\x1b[1;34;40m' + f'Computing all paths with constraints' +
          '\x1b[0m')
    try:
        pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
    except DisjunctionError as this_e:
        print(
            f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}'
        )
        exit(1)

    print('\x1b[1;34;40m' + f'Propagating on selected path' + '\x1b[0m')
    propagatedpths, reversed_pths, reversed_propagatedpths = \
        compute_path_with_disjunction(network, equipment, rqs, pths)
    # Note that deepcopy used in compute_path_with_disjunction returns
    # a list of nodes which are not belonging to network (they are copies of the node objects).
    # so there can not be propagation on these nodes.

    pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)

    print('\x1b[1;34;40m' + f'Result summary' + '\x1b[0m')
    header = ['req id', '  demand', '  snr@bandwidth A-Z (Z-A)', '  [email protected] A-Z (Z-A)',\
              '  Receiver minOSNR', '  mode', '  Gbit/s', '  nb of tsp pairs',\
              'N,M or blocking reason']
    data = []
    data.append(header)
    for i, this_p in enumerate(propagatedpths):
        rev_pth = reversed_propagatedpths[i]
        if rev_pth and this_p:
            psnrb = f'{round(mean(this_p[-1].snr),2)} ({round(mean(rev_pth[-1].snr),2)})'
            psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}' +\
                   f' ({round(mean(rev_pth[-1].snr_01nm),2)})'
        elif this_p:
            psnrb = f'{round(mean(this_p[-1].snr),2)}'
            psnr = f'{round(mean(this_p[-1].snr_01nm),2)}'

        try:
            if rqs[i].blocking_reason in BLOCKING_NOPATH:
                line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} :',\
                        f'-', f'-', f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',\
                        f'-', f'{rqs[i].blocking_reason}']
            else:
                line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,\
                        psnr, f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',\
                        f'-', f'{rqs[i].blocking_reason}']
        except AttributeError:
            line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,\
                    psnr, f'{rqs[i].OSNR}', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',\
                    f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }', f'({rqs[i].N},{rqs[i].M})']
        data.append(line)

    col_width = max(len(word) for row in data for word in row[2:])  # padding
    firstcol_width = max(len(row[0]) for row in data)  # padding
    secondcol_width = max(len(row[1]) for row in data)  # padding
    for row in data:
        firstcol = ''.join(row[0].ljust(firstcol_width))
        secondcol = ''.join(row[1].ljust(secondcol_width))
        remainingcols = ''.join(
            word.center(col_width, ' ') for word in row[2:])
        print(f'{firstcol} {secondcol} {remainingcols}')
    print('\x1b[1;33;40m'+f'Result summary shows mean SNR and OSNR (average over all channels)' +\
          '\x1b[0m')

    if args.output:
        result = []
        # assumes that list of rqs and list of propgatedpths have same order
        for i, pth in enumerate(propagatedpths):
            result.append(
                Result_element(rqs[i], pth, reversed_propagatedpths[i]))
        temp = path_result_json(result)
        fnamecsv = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.csv'
        fnamejson = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.json'
        with open(fnamejson, 'w', encoding='utf-8') as fjson:
            fjson.write(
                dumps(path_result_json(result), indent=2, ensure_ascii=False))
            with open(fnamecsv, "w", encoding='utf-8') as fcsv:
                jsontocsv(temp, equipment, fcsv)
                print('\x1b[1;34;40m' +
                      f'saving in {args.output} and {fnamecsv}' + '\x1b[0m')
Esempio n. 6
0
    print(pths)
    test = compute_path(network, equipment, pths)

    #TODO write results

    header = ['demand', 'snr@bandwidth', '[email protected]', 'Receiver minOSNR']
    data = []
    data.append(header)
    for i, p in enumerate(test):
        if p:
            line = [f'{pths[i].source} to {pths[i].destination} : ', f'{round(mean(p[-1].snr),2)}',\
                f'{round(mean(p[-1].snr+lin2db(pths[i].baud_rate/(12.5e9))),2)}',\
                f'{pths[i].OSNR}']
        else:
            line = [f'no path from {pths[i].source} to {pths[i].destination} ']
        data.append(line)

    col_width = max(len(word) for row in data for word in row)  # padding
    for row in data:
        print(''.join(word.ljust(col_width) for word in row))

    if args.output:
        result = []
        for p in test:
            result.append(Result_element(pths[test.index(p)], p))
        with open(args.output, 'w') as f:
            f.write(dumps(path_result_json(result), indent=2))
            fnamecsv = next(s for s in args.output.split('.')) + '.csv'
            with open(fnamecsv, "w") as fcsv:
                jsontocsv(path_result_json(result), equipment, fcsv)