Esempio n. 1
0
def streaming_annotate(stream_file):
  """Annotate a local video file through streaming API."""

  client = videointelligence.StreamingVideoIntelligenceServiceClient()

  # Set the chunk size to 5MB (recommended less than 10MB).
  chunk_size = 5 * 1024 * 1024

  # Open file.
  with open(stream_file) as video_file:
    requests = (
        types.StreamingAnnotateVideoRequest(input_content=chunk)
        for chunk in stream(video_file, chunk_size))

    # Set streaming config.
    config = types.StreamingVideoConfig(
        feature=enums.StreamingFeature.STREAMING_EXPLICIT_CONTENT_DETECTION)
    config_request = types.StreamingAnnotateVideoRequest(video_config=config)
    # streaming_annotate_video returns a generator.
    # timeout argument specifies the maximum allowable time duration between
    # the time that the last packet is sent to Google video intelligence API
    # and the time that an annotation result is returned from the API.
    # timeout argument is represented in number of seconds.
    responses = client.streaming_annotate_video(
        config_request, requests, timeout=10800)

    print('\nReading response.')
    # Retrieve results from the response generator.
    for response in responses:
      for frame in response.annotation_results.explicit_annotation.frames:
        likelihood = enums.Likelihood(frame.pornography_likelihood)
        frame_time = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
        print('Time: {}s'.format(frame_time))
        print('\tpornography: {}'.format(likelihood.name))
Esempio n. 2
0
def analyze_explicit_content(path):
    # [START video_analyze_explicit_content]
    """ Detects explicit content from the GCS path to a video. """
    video_client = videointelligence.VideoIntelligenceServiceClient()
    features = [videointelligence.enums.Feature.EXPLICIT_CONTENT_DETECTION]

    operation = video_client.annotate_video(path, features=features)
    print('\nProcessing video for explicit content annotations:')

    result = operation.result(timeout=90)
    print('\nFinished processing.')

    # first result is retrieved because a single video was processed
    for frame in result.annotation_results[0].explicit_annotation.frames:
        likelihood = enums.Likelihood(frame.pornography_likelihood)
        frame_time = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
        print('Time: {}s'.format(frame_time))
        print('\tpornography: {}'.format(likelihood.name))