Esempio n. 1
0
 def get_xc_difference(self, xc):
     if isinstance(xc, str):
         xc = XC(xc)
     xc.initialize(self.density, self.hamiltonian, self.wfs,
                   self.occupations)
     xc.set_positions(self.atoms.get_scaled_positions() % 1.0)
     if xc.orbital_dependent:
         self.converge_wave_functions()
     return self.hamiltonian.get_xc_difference(xc, self.density) * Hartree
Esempio n. 2
0
 def get_xc_difference(self, xc):
     if isinstance(xc, str):
         xc = XC(xc)
     xc.initialize(self.density, self.hamiltonian, self.wfs,
                   self.occupations)
     xc.set_positions(self.atoms.get_scaled_positions() % 1.0)
     if xc.orbital_dependent:
         self.converge_wave_functions()
     return self.hamiltonian.get_xc_difference(xc, self.density) * Hartree
Esempio n. 3
0
 def get_xc_difference(self, xc):
     if isinstance(xc, (str, dict)):
         xc = XC(xc)
     xc.set_grid_descriptor(self.density.finegd)
     xc.initialize(self.density, self.hamiltonian, self.wfs,
                   self.occupations)
     xc.set_positions(self.spos_ac)
     if xc.orbital_dependent:
         self.converge_wave_functions()
     return self.hamiltonian.get_xc_difference(xc, self.density) * Ha
Esempio n. 4
0
    def linearize_to_xc(self, newxc):
        """Linearize Hamiltonian to difference XC functional.

        Used in real time TDDFT to perform calculations with various kernels.
        """
        if isinstance(newxc, str):
            newxc = XC(newxc)
        self.log('Linearizing xc-hamiltonian to ' + str(newxc))
        newxc.initialize(self.density, self.hamiltonian, self.wfs,
                         self.occupations)
        self.hamiltonian.linearize_to_xc(newxc, self.density)
Esempio n. 5
0
 def linearize_to_xc(self, newxc):
     """Linearize Hamiltonian to difference XC functional.
     
     Used in real time TDDFT to perform calculations with various kernels.
     """
     if isinstance(newxc, str):
         newxc = XC(newxc)
     self.txt.write('Linearizing xc-hamiltonian to ' + str(newxc))
     newxc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)
     self.hamiltonian.linearize_to_xc(newxc, self.density)
Esempio n. 6
0
    def initialize_fxc(self, niter):
        self.has_fxc = self.fxc_name is not None
        if not self.has_fxc:
            return
        self.timer.start('Initialize fxc')
        # XXX: Similar functionality is available in
        # paw.py: PAW.linearize_to_xc(self, newxc)
        # See test/lcaotddft/fxc_vs_linearize.py

        get_H_MM = self.get_hamiltonian_matrix

        # Calculate deltaXC: 1. take current H_MM
        if niter == 0:
            self.deltaXC_H_uMM = [None] * len(self.wfs.kpt_u)
            for u, kpt in enumerate(self.wfs.kpt_u):
                self.deltaXC_H_uMM[u] = get_H_MM(kpt, addfxc=False)

        # Update hamiltonian.xc
        if self.fxc_name == 'RPA':
            xc_name = 'null'
        else:
            xc_name = self.fxc_name
        # XXX: xc is not written to the gpw file
        # XXX: so we need to set it always
        xc = XC(xc_name)
        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)
        xc.set_positions(self.hamiltonian.spos_ac)
        self.hamiltonian.xc = xc
        self.update()

        # Calculate deltaXC: 2. update with new H_MM
        if niter == 0:
            for u, kpt in enumerate(self.wfs.kpt_u):
                self.deltaXC_H_uMM[u] -= get_H_MM(kpt, addfxc=False)
        self.timer.stop('Initialize fxc')
Esempio n. 7
0
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        # Generate new xc functional only when it is reset by set
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if xc.orbital_dependent and mode == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if mode == 'pw':
            mode = PW()

        if mode == 'fd' and par.usefractrans:
            raise NotImplementedError('FD mode does not support '
                                      'fractional translations.')
        
        if mode == 'lcao' and par.usefractrans:
            raise Warning('Fractional translations have not been tested '
                          'with LCAO mode. Use with care!')

        if par.realspace is None:
            realspace = not isinstance(mode, PW)
        else:
            realspace = par.realspace
            if isinstance(mode, PW):
                assert not realspace

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace)

        if par.filter is None and not isinstance(mode, PW):
            gamma = 1.6
            hmax = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / N_c).max()
            
            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / hmax - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc,
                        filter, world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False
            
        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))
            
        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        # K-point descriptor
        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear, par.usefractrans)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None
      
        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        ## rbw: If usefractrans=True, kd.set_symmetry might overwrite N_c.
        ## This is necessary, because N_c must be dividable by 1/(fractional translation),
        ## f.e. fractional translations of a grid point must land on a grid point.
        N_c = kd.set_symmetry(atoms, setups, magmom_av, par.usesymm, N_c, world)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5
        
        nbands = par.nbands
        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()
                
                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.'
                                     % (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d'
                             % (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] / Hartree**2 * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world,
                                                  nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if isinstance(mode, PW):
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            domain_comm, kpt_comm, band_comm = \
                parallelization.build_communicators()

            #domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(
            #    parsize_domain, parsize_bands,
            #    nspins, kd.nibzkpts, world, par.idiotproof, mode)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError('Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically
                
                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1
                
                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                if collinear:
                    self.wfs = LCAOWaveFunctions(lcaoksl, *args)
                else:
                    from gpaw.xc.noncollinear import \
                         NonCollinearLCAOWaveFunctions
                    self.wfs = NonCollinearLCAOWaveFunctions(lcaoksl, *args)

            elif mode == 'fd' or isinstance(mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                                   gd, lcaobd, dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(par.stencils[0],
                        diagksl, orthoksl, initksl, gd, nvalence, setups,
                        bd, world, kd, self.timer)
                elif mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, par.external,
                    collinear, par.poissonsolver, par.stencils[1], world)
            else:
                self.hamiltonian = ReciprocalSpaceHamiltonian(
                    gd, finegd,
                    self.density.pd2, self.density.pd3,
                    nspins, setups, self.timer, xc, par.external,
                    collinear, world)
            
        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)
        
        if dry_run:
            self.dry_run()
        
        self.initialized = True
Esempio n. 8
0
    def initialize(self, atoms=None, reading=False):
        """Inexpensive initialization."""

        self.log('Initialize ...\n')

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.parameters

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        number_of_lattice_vectors = cell_cv.any(axis=1).sum()
        if number_of_lattice_vectors < 3:
            raise ValueError(
                'GPAW requires 3 lattice vectors.  Your system has {0}.'.
                format(number_of_lattice_vectors))

        pbc_c = atoms.get_pbc()
        assert len(pbc_c) == 3
        magmom_a = atoms.get_initial_magnetic_moments()

        mpi.synchronize_atoms(atoms, self.world)

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, basestring):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode
        if isinstance(mode, basestring):
            mode = {'name': mode}
        if isinstance(mode, dict):
            mode = create_wave_function_mode(**mode)

        if par.dtype == complex:
            warnings.warn('Use mode={0}(..., force_complex_dtype=True) '
                          'instead of dtype=complex'.format(mode.name.upper()))
            mode.force_complex_dtype = True
            del par['dtype']
            par.mode = mode

        if xc.orbital_dependent and mode.name == 'lcao':
            raise ValueError('LCAO mode does not support '
                             'orbital-dependent XC functionals.')

        realspace = (mode.name != 'pw' and mode.interpolation != 'fft')

        if not realspace:
            pbc_c = np.ones(3, bool)

        self.create_setups(mode, xc)

        magnetic = magmom_a.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_a[0] = self.setups[0].get_hunds_rule_moment(par.charge)

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        nspins = 1 + int(spinpol)

        if spinpol:
            self.log('Spin-polarized calculation.')
            self.log('Magnetic moment:  {0:.6f}\n'.format(magmom_a.sum()))
        else:
            self.log('Spin-paired calculation\n')

        if isinstance(par.background_charge, dict):
            background = create_background_charge(**par.background_charge)
        else:
            background = par.background_charge

        nao = self.setups.nao
        nvalence = self.setups.nvalence - par.charge
        if par.background_charge is not None:
            nvalence += background.charge
        M = abs(magmom_a.sum())

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in self.setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in self.setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.' %
                                     (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        self.create_occupations(magmom_a.sum(), orbital_free)

        if self.scf is None:
            self.create_scf(nvalence, mode)

        self.create_symmetry(magmom_a, cell_cv)

        if not self.wfs:
            self.create_wave_functions(mode, realspace, nspins, nbands, nao,
                                       nvalence, self.setups, magmom_a,
                                       cell_cv, pbc_c)
        else:
            self.wfs.set_setups(self.setups)

        if not self.wfs.eigensolver:
            self.create_eigensolver(xc, nbands, mode)

        if self.density is None and not reading:
            assert not par.fixdensity, 'No density to fix!'

        olddens = None
        if (self.density is not None and
            (self.density.gd.parsize_c != self.wfs.gd.parsize_c).any()):
            # Domain decomposition has changed, so we need to
            # reinitialize density and hamiltonian:
            if par.fixdensity:
                olddens = self.density

            self.density = None
            self.hamiltonian = None

        if self.density is None:
            self.create_density(realspace, mode, background)

        # XXXXXXXXXX if setups change, then setups.core_charge may change.
        # But that parameter was supplied in Density constructor!
        # This surely is a bug!
        self.density.initialize(self.setups, self.timer, magmom_a, par.hund)
        self.density.set_mixer(par.mixer)
        if self.density.mixer.driver.name == 'dummy' or par.fixdensity:
            self.log('No density mixing\n')
        else:
            self.log(self.density.mixer, '\n')
        self.density.fixed = par.fixdensity
        self.density.log = self.log

        if olddens is not None:
            self.density.initialize_from_other_density(olddens,
                                                       self.wfs.kptband_comm)

        if self.hamiltonian is None:
            self.create_hamiltonian(realspace, mode, xc)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        if xc.name == 'GLLBSC' and olddens is not None:
            xc.heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelp(olddens)

        self.print_memory_estimate(maxdepth=memory_estimate_depth + 1)

        print_parallelization_details(self.wfs, self.density, self.log)

        self.log('Number of atoms:', natoms)
        self.log('Number of atomic orbitals:', self.wfs.setups.nao)
        if self.nbands_parallelization_adjustment != 0:
            self.log(
                'Adjusting number of bands by %+d to match parallelization' %
                self.nbands_parallelization_adjustment)
        self.log('Number of bands in calculation:', self.wfs.bd.nbands)
        self.log('Bands to converge: ', end='')
        n = par.convergence.get('bands', 'occupied')
        if n == 'occupied':
            self.log('occupied states only')
        elif n == 'all':
            self.log('all')
        else:
            self.log('%d lowest bands' % n)
        self.log('Number of valence electrons:', self.wfs.nvalence)

        self.log(flush=True)

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if (realspace and self.hamiltonian.poisson.get_description()
                == 'FDTD+TDDFT'):
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.log)
            self.log.fd.flush()

        self.initialized = True
        self.log('... initialized\n')
class OmegaMatrix:

    """
    Omega matrix in Casidas linear response formalism

    Parameters
      - calculator: the calculator object the ground state calculation
      - kss: the Kohn-Sham singles object
      - xc: the exchange correlation approx. to use
      - derivativeLevel: which level i of d^i Exc/dn^i to use
      - numscale: numeric epsilon for derivativeLevel=0,1
      - filehandle: the oject can be read from a filehandle
      - txt: output stream or file name
      - finegrid: level of fine grid to use. 0: nothing, 1 for poisson only,
        2 everything on the fine grid
    """

    def __init__(self,
                 calculator=None,
                 kss=None,
                 xc=None,
                 derivativeLevel=None,
                 numscale=0.001,
                 filehandle=None,
                 txt=None,
                 finegrid=2,
                 eh_comm=None,
                 ):

        if not txt and calculator:
            txt = calculator.txt
        self.txt = get_txt(txt, mpi.rank)

        if eh_comm is None:
            eh_comm = mpi.serial_comm

        self.eh_comm = eh_comm

        if filehandle is not None:
            self.kss = kss
            self.read(fh=filehandle)
            return None

        self.fullkss = kss
        self.finegrid = finegrid

        if calculator is None:
            return

        self.paw = calculator
        wfs = self.paw.wfs

        # handle different grid possibilities
        self.restrict = None
        # self.poisson = PoissonSolver(nn=self.paw.hamiltonian.poisson.nn)
        self.poisson = calculator.hamiltonian.poisson
        if finegrid:
            self.poisson.set_grid_descriptor(self.paw.density.finegd)
            self.poisson.initialize()

            self.gd = self.paw.density.finegd
            if finegrid == 1:
                self.gd = wfs.gd
        else:
            self.poisson.set_grid_descriptor(wfs.gd)
            self.poisson.initialize()
            self.gd = wfs.gd
        self.restrict = Transformer(self.paw.density.finegd, wfs.gd,
                                    self.paw.input_parameters.stencils[1]
                                    ).apply

        if xc == 'RPA':
            xc = None  # enable RPA as keyword
        if xc is not None:
            self.xc = XC(xc)
            self.xc.initialize(self.paw.density, self.paw.hamiltonian,
                               wfs, self.paw.occupations)

            # check derivativeLevel
            if derivativeLevel is None:
                derivativeLevel = \
                    self.xc.get_functional().get_max_derivative_level()
            self.derivativeLevel = derivativeLevel
            # change the setup xc functional if needed
            # the ground state calculation may have used another xc
            if kss.npspins > kss.nvspins:
                spin_increased = True
            else:
                spin_increased = False
        else:
            self.xc = None

        self.numscale = numscale

        self.singletsinglet = False
        if kss.nvspins < 2 and kss.npspins < 2:
            # this will be a singlet to singlet calculation only
            self.singletsinglet = True

        nij = len(kss)
        self.Om = np.zeros((nij, nij))
        self.get_full()

    def get_full(self):

        self.paw.timer.start('Omega RPA')
        self.get_rpa()
        self.paw.timer.stop()

        if self.xc is not None:
            self.paw.timer.start('Omega XC')
            self.get_xc()
            self.paw.timer.stop()

        self.eh_comm.sum(self.Om)
        self.full = self.Om

    def get_xc(self):
        """Add xc part of the coupling matrix"""

        # shorthands
        paw = self.paw
        wfs = paw.wfs
        gd = paw.density.finegd
        comm = gd.comm
        eh_comm = self.eh_comm

        fg = self.finegrid is 2
        kss = self.fullkss
        nij = len(kss)

        Om_xc = self.Om
        # initialize densities
        # nt_sg is the smooth density on the fine grid with spin index

        if kss.nvspins == 2:
            # spin polarised ground state calc.
            nt_sg = paw.density.nt_sg
        else:
            # spin unpolarised ground state calc.
            if kss.npspins == 2:
                # construct spin polarised densities
                nt_sg = np.array([.5 * paw.density.nt_sg[0],
                                  .5 * paw.density.nt_sg[0]])
            else:
                nt_sg = paw.density.nt_sg
        # check if D_sp have been changed before
        D_asp = self.paw.density.D_asp
        for a, D_sp in D_asp.items():
            if len(D_sp) != kss.npspins:
                if len(D_sp) == 1:
                    D_asp[a] = np.array([0.5 * D_sp[0], 0.5 * D_sp[0]])
                else:
                    D_asp[a] = np.array([D_sp[0] + D_sp[1]])

        # restrict the density if needed
        if fg:
            nt_s = nt_sg
        else:
            nt_s = self.gd.zeros(nt_sg.shape[0])
            for s in range(nt_sg.shape[0]):
                self.restrict(nt_sg[s], nt_s[s])
            gd = paw.density.gd

        # initialize vxc or fxc

        if self.derivativeLevel == 0:
            raise NotImplementedError
            if kss.npspins == 2:
                v_g = nt_sg[0].copy()
            else:
                v_g = nt_sg.copy()
        elif self.derivativeLevel == 1:
            pass
        elif self.derivativeLevel == 2:
            fxc_sg = np.zeros(nt_sg.shape)
            self.xc.calculate_fxc(gd, nt_sg, fxc_sg)
        else:
            raise ValueError('derivativeLevel can only be 0,1,2')

# self.paw.my_nuclei = []

        ns = self.numscale
        xc = self.xc
        print('XC', nij, 'transitions', file=self.txt)
        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print('XC kss[' + '%d' % ij + ']', file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            if self.derivativeLevel >= 1:
                # vxc is available
                # We use the numerical two point formula for calculating
                # the integral over fxc*n_ij. The results are
                # vvt_s        smooth integral
                # nucleus.I_sp atom based correction matrices (pack2)
                #              stored on each nucleus
                timer2.start('init v grids')
                vp_s = np.zeros(nt_s.shape, nt_s.dtype.char)
                vm_s = np.zeros(nt_s.shape, nt_s.dtype.char)
                if kss.npspins == 2:  # spin polarised
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] += ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vp_s)
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] -= ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vm_s)
                else:  # spin unpolarised
                    nv = nt_s + ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vp_s)
                    nv = nt_s - ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vm_s)
                vvt_s = (0.5 / ns) * (vp_s - vm_s)
                timer2.stop()

                # initialize the correction matrices
                timer2.start('init v corrections')
                I_asp = {}
                for a, P_ni in wfs.kpt_u[kss[ij].spin].P_ani.items():
                    # create the modified density matrix
                    Pi_i = P_ni[kss[ij].i]
                    Pj_i = P_ni[kss[ij].j]
                    P_ii = np.outer(Pi_i, Pj_i)
                    # we need the symmetric form, hence we can pack
                    P_p = pack(P_ii)
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] -= ns * P_p
                    setup = wfs.setups[a]
                    I_sp = np.zeros_like(D_sp)
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp *= -1.0
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] += ns * P_p
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp /= 2.0 * ns
                    I_asp[a] = I_sp
                timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            for kq in range(ij, nij):
                weight = self.weight_Kijkq(ij, kq)

                if self.derivativeLevel == 0:
                    # only Exc is available

                    if kss.npspins == 2:  # spin polarised
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] += kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -= kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -=\
                            kss[ij].get(fg)
                        nv_g[kss[kq].pspin] +=\
                            kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -= \
                            kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -=\
                            kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                    else:  # spin unpolarised
                        nv_g = nt_sg + ns * kss[ij].get(fg)\
                            + ns * kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg + ns * kss[ij].get(fg)\
                            - ns * kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg - ns * kss[ij].get(fg)\
                            + ns * kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg - ns * kss[ij].get(fg)\
                            - ns * kss[kq].get(fg)
                        Excmm = xc.get_energy_and_potential(nv_g, v_g)

                    Om_xc[ij, kq] += weight *\
                        0.25 * \
                        (Excpp - Excmp - Excpm + Excmm) / (ns * ns)

                elif self.derivativeLevel == 1:
                    # vxc is available

                    timer2.start('integrate')
                    Om_xc[ij, kq] += weight *\
                        self.gd.integrate(kss[kq].get(fg) *
                                          vvt_s[kss[kq].pspin])
                    timer2.stop()

                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                elif self.derivativeLevel == 2:
                    # fxc is available
                    if kss.npspins == 2:  # spin polarised
                        Om_xc[ij, kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg[kss[ij].pspin, kss[kq].pspin])
                    else:  # spin unpolarised
                        Om_xc[ij, kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg)

                    # XXX still numeric derivatives for local terms
                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                if ij != kq:
                    Om_xc[kq, ij] = Om_xc[ij, kq]

            timer.stop()
# timer2.write()
            if ij < (nij - 1):
                print('XC estimated time left',
                      self.time_left(timer, t0, ij, nij), file=self.txt)

    def Coulomb_integral_kss(self, kss_ij, kss_kq, phit, rhot,
                             timer=None):
        # smooth part
        if timer:
            timer.start('integrate')
        I = self.gd.integrate(rhot * phit)
        if timer:
            timer.stop()
            timer.start('integrate corrections 2')

        wfs = self.paw.wfs
        Pij_ani = wfs.kpt_u[kss_ij.spin].P_ani
        Pkq_ani = wfs.kpt_u[kss_kq.spin].P_ani

        # Add atomic corrections
        Ia = 0.0
        for a, Pij_ni in Pij_ani.items():
            Pi_i = Pij_ni[kss_ij.i]
            Pj_i = Pij_ni[kss_ij.j]
            Dij_ii = np.outer(Pi_i, Pj_i)
            Dij_p = pack(Dij_ii)
            Pk_i = Pkq_ani[a][kss_kq.i]
            Pq_i = Pkq_ani[a][kss_kq.j]
            Dkq_ii = np.outer(Pk_i, Pq_i)
            Dkq_p = pack(Dkq_ii)
            C_pp = wfs.setups[a].M_pp
            #   ----
            # 2 >      P   P  C    P  P
            #   ----    ip  jr prst ks qt
            #   prst
            Ia += 2.0 * np.dot(Dkq_p, np.dot(C_pp, Dij_p))
        I += self.gd.comm.sum(Ia)
        if timer:
            timer.stop()

        return I

    def get_rpa(self):
        """calculate RPA part of the omega matrix"""

        # shorthands
        kss = self.fullkss
        finegrid = self.finegrid
        wfs = self.paw.wfs
        eh_comm = self.eh_comm

        # calculate omega matrix
        nij = len(kss)
        print('RPA', nij, 'transitions', file=self.txt)

        Om = self.Om

        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print('RPA kss[' + '%d' % ij + ']=', kss[ij], file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            # smooth density including compensation charges
            timer2.start('with_compensation_charges 0')
            rhot_p = kss[ij].with_compensation_charges(
                finegrid is not 0)
            timer2.stop()

            # integrate with 1/|r_1-r_2|
            timer2.start('poisson')
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype.char)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
# print "shapes 0=",phit.shape,rhot.shape
                self.restrict(phit_p, phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij, nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start('kq with_compensation_charges')
                    rhot = kss[kq].with_compensation_charges(
                        finegrid is 2)
                    timer2.stop()

                pre = 2 * sqrt(kss[ij].get_energy() * kss[kq].get_energy() *
                               kss[ij].get_weight() * kss[kq].get_weight())
                I = self.Coulomb_integral_kss(kss[ij], kss[kq],
                                              rhot, phit, timer2)
                Om[ij, kq] = pre * I

                if ij == kq:
                    Om[ij, kq] += kss[ij].get_energy() ** 2
                else:
                    Om[kq, ij] = Om[ij, kq]

            timer.stop()
# timer2.write()
            if ij < (nij - 1):
                t = timer.get_time(ij)  # time for nij-ij calculations
                t = .5 * t * \
                    (nij - ij)  # estimated time for n*(n+1)/2, n=nij-(ij+1)
                print('RPA estimated time left',
                      self.timestring(t0 * (nij - ij - 1) + t), file=self.txt)

    def singlets_triplets(self):
        """Split yourself into singlet and triplet transitions"""

        assert(self.fullkss.npspins == 2)
        assert(self.fullkss.nvspins == 1)

        # strip kss from down spins
        skss = KSSingles()
        tkss = KSSingles()
        map = []
        for ij, ks in enumerate(self.fullkss):
            if ks.pspin == ks.spin:
                skss.append((ks + ks) / sqrt(2))
                tkss.append((ks - ks) / sqrt(2))
                map.append(ij)

        nkss = len(skss)

        # define the singlet and the triplet omega-matrixes
        sOm = OmegaMatrix(kss=skss)
        sOm.full = np.empty((nkss, nkss))
        tOm = OmegaMatrix(kss=tkss)
        tOm.full = np.empty((nkss, nkss))
        for ij in range(nkss):
            for kl in range(nkss):
                sOm.full[ij, kl] = (self.full[map[ij], map[kl]] +
                                    self.full[map[ij], nkss + map[kl]])
                tOm.full[ij, kl] = (self.full[map[ij], map[kl]] -
                                    self.full[map[ij], nkss + map[kl]])
        return sOm, tOm

    def timestring(self, t):
        ti = int(t + 0.5)
        td = ti // 86400
        st = ''
        if td > 0:
            st += '%d' % td + 'd'
            ti -= td * 86400
        th = ti // 3600
        if th > 0:
            st += '%d' % th + 'h'
            ti -= th * 3600
        tm = ti // 60
        if tm > 0:
            st += '%d' % tm + 'm'
            ti -= tm * 60
        st += '%d' % ti + 's'
        return st

    def time_left(self, timer, t0, ij, nij):
        t = timer.get_time(ij)  # time for nij-ij calculations
        t = .5 * t * (nij - ij)  # estimated time for n*(n+1)/2, n=nij-(ij+1)
        return self.timestring(t0 * (nij - ij - 1) + t)

    def get_map(self, istart=None, jend=None, energy_range=None):
        """Return the reduction map for the given requirements"""

        self.istart = istart
        self.jend = jend
        if istart is None and jend is None and energy_range is None:
            return None, self.fullkss

        # reduce the matrix
        print('# diagonalize: %d transitions original'
              % len(self.fullkss), file=self.txt)

        if energy_range is None:
            if istart is None:
                istart = self.kss.istart
            if self.fullkss.istart > istart:
                raise RuntimeError('istart=%d has to be >= %d' %
                                   (istart, self.kss.istart))
            if jend is None:
                jend = self.kss.jend
            if self.fullkss.jend < jend:
                raise RuntimeError('jend=%d has to be <= %d' %
                                   (jend, self.kss.jend))

        else:
            try:
                emin, emax = energy_range
            except:
                emax = energy_range
                emin = 0.
            emin /= Hartree
            emax /= Hartree

        map = []
        kss = KSSingles()
        for ij, k in zip(range(len(self.fullkss)), self.fullkss):
            if energy_range is None:
                if k.i >= istart and k.j <= jend:
                    kss.append(k)
                    map.append(ij)
            else:
                if k.energy >= emin and k.energy < emax:
                    kss.append(k)
                    map.append(ij)
        kss.update()
        print('# diagonalize: %d transitions now' % len(kss), file=self.txt)

        return map, kss

    def diagonalize(self, istart=None, jend=None, energy_range=None,
                    TDA=False):
        """Evaluate Eigenvectors and Eigenvalues:"""

        if TDA:
            raise NotImplementedError

        map, kss = self.get_map(istart, jend, energy_range)
        nij = len(kss)
        if map is None:
            evec = self.full.copy()
        else:
            evec = np.zeros((nij, nij))
            for ij in range(nij):
                for kq in range(nij):
                    evec[ij, kq] = self.full[map[ij], map[kq]]
        assert(len(evec) > 0)

        self.eigenvectors = evec
        self.eigenvalues = np.zeros((len(kss)))
        self.kss = kss
        diagonalize(self.eigenvectors, self.eigenvalues)

    def Kss(self, kss=None):
        """Set and get own Kohn-Sham singles"""
        if kss is not None:
            self.fullkss = kss
        if(hasattr(self, 'fullkss')):
            return self.fullkss
        else:
            return None

    def read(self, filename=None, fh=None):
        """Read myself from a file"""
        if fh is None:
            f = open(filename, 'r')
        else:
            f = fh

        f.readline()
        nij = int(f.readline())
        full = np.zeros((nij, nij))
        for ij in range(nij):
            l = f.readline().split()
            for kq in range(ij, nij):
                full[ij, kq] = float(l[kq - ij])
                full[kq, ij] = full[ij, kq]
        self.full = full

        if fh is None:
            f.close()

    def write(self, filename=None, fh=None):
        """Write current state to a file."""
        if mpi.rank == mpi.MASTER:
            if fh is None:
                f = open(filename, 'w')
            else:
                f = fh

            f.write('# OmegaMatrix\n')
            nij = len(self.fullkss)
            f.write('%d\n' % nij)
            for ij in range(nij):
                for kq in range(ij, nij):
                    f.write(' %g' % self.full[ij, kq])
                f.write('\n')

            if fh is None:
                f.close()

    def weight_Kijkq(self, ij, kq):
        """weight for the coupling matrix terms"""
        kss = self.fullkss
        return 2. * sqrt(kss[ij].get_energy() * kss[kq].get_energy() *
                         kss[ij].get_weight() * kss[kq].get_weight())

    def __str__(self):
        str = '<OmegaMatrix> '
        if hasattr(self, 'eigenvalues'):
            str += 'dimension ' + ('%d' % len(self.eigenvalues))
            str += '\neigenvalues: '
            for ev in self.eigenvalues:
                str += ' ' + ('%f' % (sqrt(ev) * Hartree))
        return str
Esempio n. 10
0
class OmegaMatrix:
    """
    Omega matrix in Casidas linear response formalism

    Parameters
      - calculator: the calculator object the ground state calculation
      - kss: the Kohn-Sham singles object
      - xc: the exchange correlation approx. to use
      - derivativeLevel: which level i of d^i Exc/dn^i to use
      - numscale: numeric epsilon for derivativeLevel=0,1
      - filehandle: the oject can be read from a filehandle
      - txt: output stream or file name
      - finegrid: level of fine grid to use. 0: nothing, 1 for poisson only,
        2 everything on the fine grid
    """
    def __init__(self,
                 calculator=None,
                 kss=None,
                 xc=None,
                 derivativeLevel=None,
                 numscale=0.001,
                 filehandle=None,
                 txt=None,
                 finegrid=2,
                 eh_comm=None,
                 ):
        
        if not txt and calculator:
            txt = calculator.txt
        self.txt, firsttime = initialize_text_stream(txt, mpi.rank)

        if eh_comm == None:
            eh_comm = mpi.serial_comm

        self.eh_comm = eh_comm

        if filehandle is not None:
            self.kss = kss
            self.read(fh=filehandle)
            return None

        self.fullkss = kss
        self.finegrid = finegrid

        if calculator is None:
            return

        self.paw = calculator
        wfs = self.paw.wfs
        
        # handle different grid possibilities
        self.restrict = None
        self.poisson = PoissonSolver(nn=self.paw.hamiltonian.poisson.nn)
        if finegrid:
            self.poisson.set_grid_descriptor(self.paw.density.finegd)
            self.poisson.initialize()
            
            self.gd = self.paw.density.finegd
            if finegrid == 1:
                self.gd = wfs.gd
        else:
            self.poisson.set_grid_descriptor(wfs.gd)
            self.poisson.initialize()
            self.gd = wfs.gd
        self.restrict = Transformer(self.paw.density.finegd, wfs.gd,
                                    self.paw.input_parameters.stencils[1]
                                    ).apply

        if xc == 'RPA': 
            xc = None # enable RPA as keyword
        if xc is not None:
            self.xc = XC(xc)
            self.xc.initialize(self.paw.density, self.paw.hamiltonian,
                               wfs, self.paw.occupations)

            # check derivativeLevel
            if derivativeLevel is None:
                derivativeLevel= \
                    self.xc.get_functional().get_max_derivative_level()
            self.derivativeLevel = derivativeLevel
            # change the setup xc functional if needed
            # the ground state calculation may have used another xc
            if kss.npspins > kss.nvspins:
                spin_increased = True
            else:
                spin_increased = False
        else:
            self.xc = None

        self.numscale = numscale
    
        self.singletsinglet = False
        if kss.nvspins<2 and kss.npspins<2:
             # this will be a singlet to singlet calculation only
             self.singletsinglet=True

        nij = len(kss)
        self.Om = np.zeros((nij,nij))
        self.get_full()

    def get_full(self):

        self.paw.timer.start('Omega RPA')
        self.get_rpa()
        self.paw.timer.stop()

        if self.xc is not None:
            self.paw.timer.start('Omega XC')
            self.get_xc()
            self.paw.timer.stop()

        self.eh_comm.sum(self.Om)
        self.full = self.Om

    def get_xc(self):
        """Add xc part of the coupling matrix"""

        # shorthands
        paw = self.paw
        wfs = paw.wfs
        gd = paw.density.finegd
        comm = gd.comm
        eh_comm = self.eh_comm
        
        fg = self.finegrid is 2
        kss = self.fullkss
        nij = len(kss)

        Om_xc = self.Om
        # initialize densities
        # nt_sg is the smooth density on the fine grid with spin index

        if kss.nvspins==2:
            # spin polarised ground state calc.
            nt_sg = paw.density.nt_sg
        else:
            # spin unpolarised ground state calc.
            if kss.npspins==2:
                # construct spin polarised densities
                nt_sg = np.array([.5*paw.density.nt_sg[0],
                                  .5*paw.density.nt_sg[0]])
            else:
                nt_sg = paw.density.nt_sg
        # check if D_sp have been changed before
        D_asp = self.paw.density.D_asp
        for a, D_sp in D_asp.items():
            if len(D_sp) != kss.npspins:
                if len(D_sp) == 1:
                    D_asp[a] = np.array([0.5 * D_sp[0], 0.5 * D_sp[0]])
                else:
                    D_asp[a] = np.array([D_sp[0] + D_sp[1]])
                
        # restrict the density if needed
        if fg:
            nt_s = nt_sg
        else:
            nt_s = self.gd.zeros(nt_sg.shape[0])
            for s in range(nt_sg.shape[0]):
                self.restrict(nt_sg[s], nt_s[s])
            gd = paw.density.gd
                
        # initialize vxc or fxc

        if self.derivativeLevel==0:
            raise NotImplementedError
            if kss.npspins==2:
                v_g=nt_sg[0].copy()
            else:
                v_g=nt_sg.copy()
        elif self.derivativeLevel==1:
            pass
        elif self.derivativeLevel==2:
            fxc_sg = np.zeros(nt_sg.shape)
            self.xc.calculate_fxc(gd, nt_sg, fxc_sg)
        else:
            raise ValueError('derivativeLevel can only be 0,1,2')

##        self.paw.my_nuclei = []

        ns=self.numscale
        xc=self.xc
        print >> self.txt, 'XC',nij,'transitions'
        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print >> self.txt,'XC kss['+'%d'%ij+']' 

            timer = Timer()
            timer.start('init')
            timer2 = Timer()
                      
            if self.derivativeLevel >= 1:
                # vxc is available
                # We use the numerical two point formula for calculating
                # the integral over fxc*n_ij. The results are
                # vvt_s        smooth integral
                # nucleus.I_sp atom based correction matrices (pack2)
                #              stored on each nucleus
                timer2.start('init v grids')
                vp_s=np.zeros(nt_s.shape,nt_s.dtype.char)
                vm_s=np.zeros(nt_s.shape,nt_s.dtype.char)
                if kss.npspins == 2: # spin polarised
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] += ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vp_s)
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] -= ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vm_s)
                else: # spin unpolarised
                    nv = nt_s + ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vp_s)
                    nv = nt_s - ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vm_s)
                vvt_s = (0.5 / ns) * (vp_s - vm_s)
                timer2.stop()

                # initialize the correction matrices
                timer2.start('init v corrections')
                I_asp = {}
                for a, P_ni in wfs.kpt_u[kss[ij].spin].P_ani.items():
                    # create the modified density matrix
                    Pi_i = P_ni[kss[ij].i]
                    Pj_i = P_ni[kss[ij].j]
                    P_ii = np.outer(Pi_i, Pj_i)
                    # we need the symmetric form, hence we can pack
                    P_p = pack(P_ii)
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] -= ns * P_p
                    setup = wfs.setups[a]
                    I_sp = np.zeros_like(D_sp)
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp *= -1.0
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] += ns * P_p
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp /= 2.0 * ns
                    I_asp[a] = I_sp
                timer2.stop()
                    
            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)
            
            for kq in range(ij,nij):
                weight = self.weight_Kijkq(ij, kq)
                
                if self.derivativeLevel == 0:
                    # only Exc is available
                    
                    if kss.npspins==2: # spin polarised
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] += kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -= kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(\
                                            nv_g[0],v_g,nv_g[1],v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -=\
                                        kss[ij].get(fg)
                        nv_g[kss[kq].pspin] +=\
                                        kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(\
                                            nv_g[0],v_g,nv_g[1],v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -= \
                                        kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -=\
                                        kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(\
                                            nv_g[0],v_g,nv_g[1],v_g)
                    else: # spin unpolarised
                        nv_g=nt_sg + ns*kss[ij].get(fg)\
                              + ns*kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(nv_g,v_g)
                        nv_g=nt_sg + ns*kss[ij].get(fg)\
                              - ns*kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(nv_g,v_g)
                        nv_g=nt_sg - ns*kss[ij].get(fg)\
                              + ns*kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(nv_g,v_g)
                        nv_g=nt_sg - ns*kss[ij].get(fg)\
                              - ns*kss[kq].get(fg)
                        Excmm = xc.get_energy_and_potential(nv_g,v_g)

                    Om_xc[ij,kq] += weight *\
                                0.25*(Excpp-Excmp-Excpm+Excmm)/(ns*ns)
                              
                elif self.derivativeLevel == 1:
                    # vxc is available

                    timer2.start('integrate')
                    Om_xc[ij,kq] += weight*\
                                 self.gd.integrate(kss[kq].get(fg)*
                                                   vvt_s[kss[kq].pspin])
                    timer2.stop()

                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                elif self.derivativeLevel == 2:
                    # fxc is available
                    if kss.npspins==2: # spin polarised
                        Om_xc[ij,kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg[kss[ij].pspin, kss[kq].pspin])
                    else: # spin unpolarised
                        Om_xc[ij,kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg)
                    
                    # XXX still numeric derivatives for local terms
                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                if ij != kq:
                    Om_xc[kq,ij] = Om_xc[ij,kq]
                
            timer.stop()
##            timer2.write()
            if ij < (nij-1):
                print >> self.txt,'XC estimated time left',\
                    self.time_left(timer, t0, ij, nij)


    def Coulomb_integral_kss(self, kss_ij, kss_kq, phit, rhot, 
                             timer=None):
        # smooth part
        if timer: 
            timer.start('integrate')
        I = self.gd.integrate(rhot * phit)
        if timer: 
            timer.stop()
            timer.start('integrate corrections 2')
        
        wfs = self.paw.wfs
        Pij_ani = wfs.kpt_u[kss_ij.spin].P_ani
        Pkq_ani = wfs.kpt_u[kss_kq.spin].P_ani

        # Add atomic corrections
        Ia = 0.0
        for a, Pij_ni in Pij_ani.items():
            Pi_i = Pij_ni[kss_ij.i]
            Pj_i = Pij_ni[kss_ij.j]
            Dij_ii = np.outer(Pi_i, Pj_i)
            Dij_p = pack(Dij_ii)
            Pk_i = Pkq_ani[a][kss_kq.i]
            Pq_i = Pkq_ani[a][kss_kq.j]
            Dkq_ii = np.outer(Pk_i, Pq_i)
            Dkq_p = pack(Dkq_ii)
            C_pp = wfs.setups[a].M_pp
            #   ----
            # 2 >      P   P  C    P  P
            #   ----    ip  jr prst ks qt
            #   prst
            Ia += 2.0*np.dot(Dkq_p, np.dot(C_pp, Dij_p))
        I += self.gd.comm.sum(Ia)
        if timer: 
            timer.stop()

        return I

    def get_rpa(self):
        """calculate RPA part of the omega matrix"""

        # shorthands
        kss=self.fullkss
        finegrid=self.finegrid
        wfs = self.paw.wfs
        eh_comm = self.eh_comm
        
        # calculate omega matrix
        nij = len(kss)
        print >> self.txt,'RPA',nij,'transitions'
        
        Om = self.Om
        
        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print >> self.txt,'RPA kss['+'%d'%ij+']=', kss[ij]

            timer = Timer()
            timer.start('init')
            timer2 = Timer()
                      
            # smooth density including compensation charges
            timer2.start('with_compensation_charges 0')
            rhot_p = kss[ij].with_compensation_charges(
                finegrid is not 0)
            timer2.stop()
            
            # integrate with 1/|r_1-r_2|
            timer2.start('poisson')
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype.char)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
##                print "shapes 0=",phit.shape,rhot.shape
                self.restrict(phit_p,phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij,nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start('kq with_compensation_charges')
                    rhot = kss[kq].with_compensation_charges(
                        finegrid is 2)
                    timer2.stop()

                pre = 2 * sqrt(kss[ij].get_energy() * kss[kq].get_energy() *
                               kss[ij].get_weight() * kss[kq].get_weight()  )
                I = self.Coulomb_integral_kss(kss[ij], kss[kq],
                                              rhot, phit, timer2)
                Om[ij,kq] = pre * I
                    
                if ij == kq:
                    Om[ij,kq] += kss[ij].get_energy()**2
                else:
                    Om[kq,ij]=Om[ij,kq]

            timer.stop()
##            timer2.write()
            if ij < (nij-1):
                t = timer.get_time(ij) # time for nij-ij calculations
                t = .5*t*(nij-ij)  # estimated time for n*(n+1)/2, n=nij-(ij+1)
                print >> self.txt,'RPA estimated time left',\
                      self.timestring(t0*(nij-ij-1)+t)

    def singlets_triplets(self):
        """Split yourself into singlet and triplet transitions"""

        assert(self.fullkss.npspins == 2)
        assert(self.fullkss.nvspins == 1)
        
        # strip kss from down spins
        skss = KSSingles()
        tkss = KSSingles()
        map = []
        for ij, ks in enumerate(self.fullkss):
            if ks.pspin == ks.spin:
                skss.append((ks + ks) / sqrt(2))
                tkss.append((ks - ks) / sqrt(2))
                map.append(ij)
            
        nkss = len(skss)

        # define the singlet and the triplet omega-matrixes
        sOm = OmegaMatrix(kss=skss)
        sOm.full = np.empty((nkss, nkss))
        tOm = OmegaMatrix(kss=tkss)
        tOm.full = np.empty((nkss, nkss))
        for ij in range(nkss):
            for kl in range(nkss):
                sOm.full[ij, kl] = (self.full[map[ij], map[kl]] +
                                    self.full[map[ij], nkss + map[kl]])
                tOm.full[ij, kl] = (self.full[map[ij], map[kl]] -
                                    self.full[map[ij], nkss + map[kl]])
        return sOm, tOm

    def timestring(self, t):
        ti = int(t + 0.5)
        td = ti // 86400
        st = ''
        if td > 0:
            st += '%d' % td + 'd'
            ti -= td * 86400
        th = ti // 3600
        if th > 0:
            st += '%d' % th + 'h'
            ti -= th * 3600
        tm = ti // 60
        if tm > 0:
            st += '%d' % tm + 'm'
            ti -= tm * 60
        st += '%d' % ti + 's'
        return st

    def time_left(self, timer, t0, ij, nij):
        t = timer.get_time(ij) # time for nij-ij calculations
        t = .5 * t * (nij - ij)  # estimated time for n*(n+1)/2, n=nij-(ij+1)
        return self.timestring(t0 * (nij - ij - 1) + t)

    def get_map(self, istart=None, jend=None, energy_range=None):
        """Return the reduction map for the given requirements"""

        self.istart = istart
        self.jend = jend
        if istart is None and jend is None and energy_range is None:
            return None, self.fullkss

        # reduce the matrix
        print >> self.txt,'# diagonalize: %d transitions original'\
                  % len(self.fullkss)

        if energy_range is None:
            if istart is None: istart = self.kss.istart
            if self.fullkss.istart > istart:
                raise RuntimeError('istart=%d has to be >= %d' %
                                   (istart, self.kss.istart))
            if jend is None: jend = self.kss.jend
            if self.fullkss.jend < jend:
                raise RuntimeError('jend=%d has to be <= %d' %
                                   (jend, self.kss.jend))

        else:
            try:
                emin, emax = energy_range
            except:
                emax = energy_range
                emin = 0.
            emin /= Hartree
            emax /= Hartree

        map= []
        kss = KSSingles()
        for ij, k in zip(range(len(self.fullkss)), self.fullkss):
            if energy_range is None:
                if k.i >= istart and k.j <= jend:
                    kss.append(k)
                    map.append(ij)
            else:
                if k.energy >= emin and k.energy < emax:
                    kss.append(k)
                    map.append(ij)
        kss.update()
        print >> self.txt, '# diagonalize: %d transitions now' % len(kss)
            
        return map, kss

    def diagonalize(self, istart=None, jend=None, energy_range=None,
                    TDA=False):
        """Evaluate Eigenvectors and Eigenvalues:"""

        if TDA:
            raise NotImplementedError

        map, kss = self.get_map(istart, jend, energy_range)
        nij = len(kss)
        if map is None:
            evec = self.full.copy()
        else:
            evec = np.zeros((nij,nij))
            for ij in range(nij):
                for kq in range(nij):
                    evec[ij,kq] = self.full[map[ij],map[kq]]
        assert(len(evec) > 0)

        self.eigenvectors = evec        
        self.eigenvalues = np.zeros((len(kss)))
        self.kss = kss
        diagonalize(self.eigenvectors, self.eigenvalues)

    def Kss(self, kss=None):
        """Set and get own Kohn-Sham singles"""
        if kss is not None:
            self.fullkss = kss
        if(hasattr(self,'fullkss')):
            return self.fullkss
        else:
            return None
 
    def read(self, filename=None, fh=None):
        """Read myself from a file"""
        if fh is None:
            f = open(filename, 'r')
        else:
            f = fh

        f.readline()
        nij = int(f.readline())
        full = np.zeros((nij,nij))
        for ij in range(nij):
            l = f.readline().split()
            for kq in range(ij,nij):
                full[ij,kq] = float(l[kq-ij])
                full[kq,ij] = full[ij,kq]
        self.full = full

        if fh is None:
            f.close()

    def write(self, filename=None, fh=None):
        """Write current state to a file."""
        if mpi.rank == mpi.MASTER:
            if fh is None:
                f = open(filename, 'w')
            else:
                f = fh

            f.write('# OmegaMatrix\n')
            nij = len(self.fullkss)
            f.write('%d\n' % nij)
            for ij in range(nij):
                for kq in range(ij,nij):
                    f.write(' %g' % self.full[ij,kq])
                f.write('\n')
            
            if fh is None:
                f.close()

    def weight_Kijkq(self, ij, kq):
        """weight for the coupling matrix terms"""
        kss = self.fullkss
        return 2.*sqrt( kss[ij].get_energy() * kss[kq].get_energy() *
                        kss[ij].get_weight() * kss[kq].get_weight()   )

    def __str__(self):
        str='<OmegaMatrix> '
        if hasattr(self,'eigenvalues'):
            str += 'dimension '+ ('%d'%len(self.eigenvalues))
            str += "\neigenvalues: "
            for ev in self.eigenvalues:
                str += ' ' + ('%f'%(sqrt(ev) * Hartree))
        return str
Esempio n. 11
0
class LrTDDFT2:
    """Linear response TDDFT (Casida) class with indexed K-matrix storage."""
    def __init__(self,
                 basefilename,
                 gs_calc,
                 fxc=None,
                 min_occ=None,
                 max_occ=None,
                 min_unocc=None,
                 max_unocc=None,
                 max_energy_diff=1e9,
                 recalculate=None,
                 lr_communicators=None,
                 txt='-'):
        """Initialize linear response TDDFT without calculating anything.

        Note: Does NOT support spin polarized calculations yet.

        Protip: If K_matrix file is too large and you keep running out of memory when trying to calculate spectrum or response wavefunction,
        you can try
        "split -l 100000 xxx.K_matrix.ddddddofDDDDDD xxx.K_matrix.ddddddofDDDDDD."


        Input parameters:

        basefilename
          All files associated with this calculation are stored as
          *<basefilename>.<extension>*

        gs_calc
          Ground state calculator (if you are using eh_communicator,
          you need to take care that calc has suitable dd_communicator.)

        fxc
          Name of the exchange-correlation kernel (fxc) used in calculation.
          (optional)

        min_occ
          Index of the first occupied state to be included in the calculation.
          (optional)

        max_occ
          Index of the last occupied state (inclusive) to be included in the
          calculation. (optional)

        min_unocc
          Index of the first unoccupied state to be included in the
          calculation. (optional)

        max_unocc
          Index of the last unoccupied state (inclusive) to be included in the
          calculation. (optional)

        max_energy_diff
          Noninteracting Kohn-Sham excitations above this value are not
          included in the calculation. Units: eV (optional)

        recalculate
          | Force recalculation.
          | 'eigen'  : recalculate only eigensystem (useful for on-the-fly
          |            spectrum calculations and convergence checking)
          | 'matrix' : recalculate matrix without solving the eigensystem
          | 'all'    : recalculate everything
          | None     : do not recalculate anything if not needed (default)

        lr_communicators
          Communicators for parallelizing over electron-hole pairs (i.e.,
          rows of K-matrix) and domain. Note that ground state calculator
          must have a matching (domain decomposition) communicator, which
          can be assured by using lr_communicators
          to create both communicators.

        txt
          Filename for text output
        """

        # Save input params
        self.basefilename = basefilename
        self.fxc_name = fxc
        self.xc = XC(self.fxc_name)
        self.min_occ = min_occ
        self.max_occ = max_occ
        self.min_unocc = min_unocc
        self.max_unocc = max_unocc
        self.max_energy_diff = max_energy_diff / ase.units.Hartree
        self.recalculate = recalculate
        # Don't init calculator yet if it's not needed (to save memory)
        self.calc = gs_calc
        self.calc_ready = False

        # FIXME: SUPPORT ALSO SPIN POLARIZED
        self.kpt_ind = 0

        # Input paramers?
        self.deriv_scale = 1e-5   # fxc finite difference step
        # ignore transition if population difference is below this value:
        self.min_pop_diff = 1e-3

        # set up communicators
        self.lr_comms = lr_communicators

        if self.lr_comms is None:
            self.lr_comms = LrCommunicators()
        self.lr_comms.initialize(gs_calc)

        # Init text output
        if self.lr_comms.parent_comm.rank == 0 and txt is not None:
            if txt == '-':
                self.txt = sys.stdout
            elif isinstance(txt, str):
                self.txt = open(txt, 'w')
            else:
                self.txt = txt
        elif self.calc is not None:
            self.txt = self.calc.log.fd
        else:
            self.txt = devnull

        # Check and set unset params

        # If min/max_occ/unocc were not given, initialized them to include
        # everything: min_occ/unocc => 0, max_occ/unocc to nubmer of wfs,
        # energy diff to numerical infinity
        nbands = len(self.calc.wfs.kpt_u[self.kpt_ind].f_n)
        if self.min_occ is None:
            self.min_occ = 0
        if self.min_unocc is None:
            self.min_unocc = self.min_occ
        if self.max_occ is None:
            self.max_occ = nbands - 1
        if self.max_unocc is None:
            self.max_unocc = self.max_occ
        if self.max_energy_diff is None:
            self.max_energy_diff = 1e9

        self.min_occ = max(self.min_occ, 0)
        self.min_unocc = max(self.min_unocc, 0)

        if self.max_occ >= nbands:
            raise RuntimeError('Error in LrTDDFT2: max_occ >= nbands')
        if self.max_unocc >= nbands:
            raise RuntimeError('Error in LrTDDFT2: max_unocc >= nbands')

        # Only spin unpolarized calculations are supported atm
        # > FIXME
        assert len(self.calc.wfs.kpt_u) == 1, \
            'LrTDDFT2 does not support more than one k-point/spin.'
        self.kpt_ind = 0
        # <

        # Internal classes

        # list of singly excited Kohn-Sham Slater determinants
        # (ascending KS energy difference)
        self.ks_singles = KohnShamSingles(self.basefilename,
                                          self.calc,
                                          self.kpt_ind,
                                          self.min_occ, self.max_occ,
                                          self.min_unocc, self.max_unocc,
                                          self.max_energy_diff,
                                          self.min_pop_diff,
                                          self.lr_comms,
                                          self.txt)

        # Response kernel matrix K = <ip|f_Hxc|jq>
        # Note: this is not the Casida matrix
        self.K_matrix = Kmatrix(self.ks_singles, self.xc, self.deriv_scale)

        self.sl_lrtddft = self.calc.parallel['sl_lrtddft']

        # LR-TDDFT transitions
        self.lr_transitions = LrtddftTransitions(self.ks_singles,
                                                 self.K_matrix,
                                                 self.sl_lrtddft)

        # Response wavefunction
        self.lr_response_wf = None

        # Pair density
        self.pair_density = None  # pair density class

        # Timer
        self.timer = self.calc.timer
        self.timer.start('LrTDDFT')

        # If a previous calculation exist, read info file
        # self.read(self.basefilename)

        # Write info file
        # self.parent_comm.barrier()
        # if self.parent_comm.rank == 0:
        #     self.write_info(self.basefilename)

        # self.custom_axes = None
        # self.K_matrix_scaling_factor = 1.0
        self.K_matrix_values_ready = False

    def get_transitions(self, filename=None, min_energy=0.0, max_energy=30.0, units='eVcgs'):
        """Get transitions: energy, dipole strength and rotatory strength.

        Returns transitions as (w,S,R, Sx,Sy,Sz) where
        w is an array of frequencies,
        S is an array of corresponding dipole strengths,
        and R is an array of corresponding rotatory strengths.

        Input parameters:

        min_energy
          Minimum energy

        min_energy
          Maximum energy

        units
          Units for spectrum: 'au' or 'eVcgs'
        """

        self.calculate()
        self.txt.write('Calculating transitions (%s).\n' % str(datetime.datetime.now()))
        trans = self.lr_transitions.get_transitions(filename, min_energy, max_energy, units)
        self.txt.write('Transitions calculated  (%s).\n' % str(datetime.datetime.now()))
        return trans

    #################################################################
    def get_spectrum(self, filename=None, min_energy=0.0, max_energy=30.0,
                     energy_step=0.01, width=0.1, units='eVcgs'):
        """Get spectrum for dipole and rotatory strength.

        Returns folded spectrum as (w,S,R) where w is an array of frequencies,
        S is an array of corresponding dipole strengths, and R is an array of
        corresponding rotatory strengths.

        Input parameters:

        min_energy
          Minimum energy

        min_energy
          Maximum energy

        energy_step
          Spacing between calculated energies

        width
          Width of the Gaussian

        units
          Units for spectrum: 'au' or 'eVcgs'
        """
        self.calculate()
        self.txt.write('Calculating spectrum    (%s).\n' % str(datetime.datetime.now()))
        spec = self.lr_transitions.get_spectrum(filename, min_energy, max_energy, energy_step, width, units)
        self.txt.write('Spectrum calculated     (%s).\n' % str(datetime.datetime.now()))
        return spec

    #################################################################
    def get_transition_contributions(self, index_of_transition):
        """Get contributions of Kohn-Sham singles to a given transition
        as number of electrons contributing.

        Includes population difference.

        This method is meant to be used for small number of transitions.
        It is not suitable for analysing densely packed transitions of
        large systems. Use transition contribution map (TCM) or similar
        approach for this.

        Input parameters:

        index_of_transition:
          index of transition starting from zero
        """
        self.calculate()
        return self.lr_transitions.get_transition_contributions(index_of_transition)

    def calculate_response(self, excitation_energy, excitation_direction, lorentzian_width, units='eVang'):
        """Calculates and returns response using TD-DFPT.

        Input parameters:

        excitation_energy
          Energy of the laser in given units

        excitation_direction
          Vector for direction (will be normalized)

        lorentzian_width
          Life time or width parameter. Larger width results in wider
          energy envelope around excitation energy.
        """

        # S_z(omega) = 2 * omega sum_ip n_ip C^(im)_ip(omega) * mu^(z)_ip

        self.calculate()

        omega_au = excitation_energy
        width_au = lorentzian_width
        # always unit field in au !!!
        direction_au = np.array(excitation_direction)
        direction_au = direction_au / np.sqrt(np.vdot(direction_au,direction_au))

        if units == 'au':
            pass
        elif units == 'eVang':
            omega_au /= ase.units.Hartree
            width_au /= ase.units.Hartree
        else:
            raise RuntimeError('Error in calculate_response_wavefunction: Invalid units.')

        lr_response = LrResponse(self, omega_au, direction_au, width_au, self.sl_lrtddft)
        lr_response.solve()

        return lr_response

    def calculate(self):
        """Calculates linear response matrix and properties of KS
        electron-hole pairs.

        This is called implicitly by get_spectrum, get_transitions, etc.
        but there is no harm for calling this explicitly.
        """
        if not self.calc_ready:
            # Initialize wfs, paw corrections and xc, if not done yet
            # FIXME: CHECK THIS STUFF, DOES GLLB WORK???
            if not self.calc_ready:
                mode = self.calc.wfs.mode
                C_nM = self.calc.wfs.kpt_u[self.kpt_ind].C_nM
                psit_nG = self.calc.wfs.kpt_u[self.kpt_ind].psit_nG
                if ((mode == 'lcao' and C_nM is None) or
                    (mode == 'fd' and psit_nG is None)):
                    raise RuntimeError('Use ground state calculator ' +
                                       'containing the wave functions.')

                if not self.calc.scf.converged:
                    # Do not allow new scf cycles, it could change
                    # the wave function signs after every restart.
                    raise RuntimeError('Converge wave functions first.')

                spos_ac = self.calc.initialize_positions()
                self.calc.occupations.calculate(self.calc.wfs)
                self.calc.wfs.initialize(self.calc.density,
                                         self.calc.hamiltonian, spos_ac)
                self.xc.initialize(self.calc.density, self.calc.hamiltonian,
                                   self.calc.wfs, self.calc.occupations)
                if mode == 'lcao':
                    self.calc.wfs.initialize_wave_functions_from_lcao()
                self.calc_ready = True

        # Singles logic
        if self.recalculate == 'all' or self.recalculate == 'matrix':
            self.ks_singles.update_list()
            self.ks_singles.calculate()
        elif self.recalculate == 'eigen':
            self.ks_singles.read()
            self.ks_singles.kss_list_ready = True
            self.ks_singles.kss_prop_ready = True
        elif ( ( not self.ks_singles.kss_list_ready ) or
               ( not self.ks_singles.kss_prop_ready ) ):
            self.ks_singles.read()
            self.ks_singles.update_list()
            self.ks_singles.calculate()
        else:
            pass

        # K-matrix logic
        if self.recalculate == 'all' or self.recalculate == 'matrix':
            # delete files
            if self.lr_comms.parent_comm.rank == 0:
                for ready_file in glob.glob(self.basefilename +
                                            '.ready_rows.*'):
                    os.remove(ready_file)
                for K_file in glob.glob(self.basefilename + '.K_matrix.*'):
                    os.remove(K_file)
            self.K_matrix.calculate()
        elif self.recalculate == 'eigen':
            self.K_matrix.read_indices()
            self.K_matrix.K_matrix_ready = True
        elif not self.K_matrix.K_matrix_ready:
            self.K_matrix.read_indices()
            self.K_matrix.calculate()
        else:
            pass

        # Wait... we don't want to read incomplete files
        self.lr_comms.parent_comm.barrier()

        if not self.K_matrix_values_ready:
            self.K_matrix.read_values()

        # lr_transitions logic
        if not self.lr_transitions.trans_prop_ready:
            trans_file = self.basefilename + '.transitions'
            if os.path.exists(trans_file) and os.path.isfile(trans_file):
                os.remove(trans_file)
            self.lr_transitions.calculate()

        # recalculate only once
        self.recalculate = None

    def read(self, basename):
        """Does not do much at the moment."""
        info_file = open(basename + '.lr_info', 'r')
        for line in info_file:
            if line[0] == '#':
                continue
            if len(line.split()) <= 2:
                continue
            # key = line.split('=')[0]
            # value = line.split('=')[1]
            # .....
            # FIXME: do something, like warn if changed
            # ...
        info_file.close()

    def write_info(self, basename):
        """Writes used parameters to a file."""
        f = open(basename + '.lr_info', 'a+')
        f.write('# LrTDDFTindexed\n')
        f.write('%20s = %s\n' % ('xc_name', self.xc_name))
        f.write('%20s = %d\n' % ('min_occ', self.min_occ))
        f.write('%20s = %d\n' % ('min_unocc', self.min_unocc))
        f.write('%20s = %d\n' % ('max_occ', self.max_occ))
        f.write('%20s = %d\n' % ('max_unocc', self.max_unocc))
        f.write('%20s = %18.12lf\n' % ('max_energy_diff',self.max_energy_diff))
        f.write('%20s = %18.12lf\n' % ('deriv_scale', self.deriv_scale))
        f.write('%20s = %18.12lf\n' % ('min_pop_diff', self.min_pop_diff))
        f.close()

    def __del__(self):
        self.timer.stop('LrTDDFT')
Esempio n. 12
0
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        if 'txt' in self._changed_keywords:
            self.set_txt(par.txt)
        self.verbose = par.verbose

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        self.check_atoms()

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if mode == 'fd':
            mode = FD()
        elif mode == 'pw':
            mode = pw.PW()
        elif mode == 'lcao':
            mode = LCAO()
        else:
            assert hasattr(mode, 'name'), str(mode)

        if xc.orbital_dependent and mode.name == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if par.realspace is None:
            realspace = (mode.name != 'pw')
        else:
            realspace = par.realspace
            if mode.name == 'pw':
                assert not realspace

        if par.filter is None and mode.name != 'pw':
            gamma = 1.6
            if par.gpts is not None:
                h = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / par.gpts).max()
            else:
                h = (par.h or 0.2) / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, filter,
                        world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False

        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        if par.usesymm != 'default':
            warnings.warn('Use "symmetry" keyword instead of ' +
                          '"usesymm" keyword')
            par.symmetry = usesymm2symmetry(par.usesymm)

        symm = par.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear)
        m_av = magmom_av.round(decimals=3)  # round off
        id_a = zip(setups.id_a, *m_av.T)
        symmetry = Symmetry(id_a, cell_cv, atoms.pbc, **symm)
        kd.set_symmetry(atoms, symmetry, comm=world)
        setups.set_symmetry(symmetry)

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        symmetry.check_grid(N_c)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None

        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer Expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.' %
                                     (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                if orbital_free:
                    width = 0.0  # even for PBC
                    self.occupations = occupations.TFOccupations(
                        width, par.fixmom)
                else:
                    self.occupations = occupations.FermiDirac(
                        width, par.fixmom)
            else:
                self.occupations = par.occupations

            # If occupation numbers are changed, and we have wave functions,
            # recalculate the occupation numbers
            if self.wfs is not None and not isinstance(self.wfs,
                                                       EmptyWaveFunctions):
                self.occupations.calculate(self.wfs)

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode.name == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            force_crit = cc['forces']
            if force_crit is not None:
                force_crit /= Hartree / Bohr
            self.scf = SCFLoop(cc['eigenstates'] / Hartree**2 * nvalence,
                               cc['energy'] / Hartree * max(nvalence, 1),
                               cc['density'] * nvalence, par.maxiter,
                               par.fixdensity, niter_fixdensity, force_crit)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world, nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if mode.name == 'pw':
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            comms = parallelization.build_communicators()
            domain_comm = comms['d']
            kpt_comm = comms['k']
            band_comm = comms['b']
            kptband_comm = comms['D']
            domainband_comm = comms['K']

            self.comms = comms
            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None
                    and self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError(
                        'Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c, domain_comm,
                                            parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, kptband_comm,
                    self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically

                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                            and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1

                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode.name == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               bd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

                self.wfs = mode(collinear, lcaoksl, *args)

            elif mode.name == 'fd' or mode.name == 'pw':
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(
                    sl_diagonalize,
                    'fd',  # XXX
                    # choice of key 'fd' not so nice
                    gd,
                    bd,
                    domainband_comm,
                    dtype,
                    buffer_size=buffer_size,
                    timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                                'fd',
                                                gd,
                                                bd,
                                                domainband_comm,
                                                dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao,
                                                   'lcao',
                                                   gd,
                                                   lcaobd,
                                                   domainband_comm,
                                                   dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode.name == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(
                        par.stencils[0], diagksl, orthoksl, initksl, gd,
                        nvalence, setups, bd, world, kd, kptband_comm,
                        self.timer)
                elif mode.name == 'fd':
                    self.wfs = mode(par.stencils[0], diagksl, orthoksl,
                                    initksl, *args)
                else:
                    assert mode.name == 'pw'
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = pw.ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, world,
                    self.wfs.kptband_comm, par.external, collinear,
                    par.poissonsolver, par.stencils[1])
            else:
                self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                    gd, finegd, self.density.pd2, self.density.pd3, nspins,
                    setups, self.timer, xc, world, self.wfs.kptband_comm,
                    par.external, collinear)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if realspace and \
                self.hamiltonian.poisson.get_description() == 'FDTD+TDDFT':
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.text)
            self.txt.flush()

        self.initialized = True
        self._changed_keywords.clear()
Esempio n. 13
0
File: paw.py Progetto: qsnake/gpaw
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        pos_av = atoms.get_positions() / Bohr
        cell_cv = atoms.get_cell()
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_a = atoms.get_initial_magnetic_moments()

        magnetic = magmom_a.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a '
                             'spin-paired calculation!')

        nspins = 1 + int(spinpol)
        
        if isinstance(par.xc, str):
            xc = XC(par.xc)
        else:
            xc = par.xc

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, world)

        # K-point descriptor
        kd = KPointDescriptor(par.kpts, nspins)

        width = par.width
        if width is None:
            if kd.gamma:
                width = 0.0
            else:
                width = 0.1  # eV
        else:
            assert par.occupations is None
      
        if par.gpts is not None and par.h is None:
            N_c = np.array(par.gpts)
        else:
            if par.h is None:
                self.text('Using default value for grid spacing.')
                h = 0.2 
            else:
                h = par.h
            N_c = h2gpts(h, cell_cv)

        cell_cv /= Bohr


        if hasattr(self, 'time') or par.dtype==complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        kd.set_symmetry(atoms, setups, par.usesymm, N_c)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge

        nbands = par.nbands
        if nbands is None:
            nbands = nao
        elif nbands > nao and par.mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: ' +
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        M = magmom_a.sum()
        if par.hund:
            f_si = setups[0].calculate_initial_occupation_numbers(
                magmom=0, hund=True, charge=par.charge, nspins=nspins)
            Mh = f_si[0].sum() - f_si[1].sum()
            if magnetic and M != Mh:
                raise RuntimeError('You specified a magmom that does not'
                                   'agree with hunds rule!')
            else:
                M = Mh

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %d, bands: %d'
                             % (nvalence, nbands))

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M

        cc = par.convergence

        if par.mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize, parsize_bands = par.parallel['domain'], par.parallel['band']

        if parsize_bands is None:
            parsize_bands = 1

        # TODO delete/restructure so all checks are in BandDescriptor
        if nbands % parsize_bands != 0:
            raise RuntimeError('Cannot distribute %d bands to %d processors' %
                               (nbands, parsize_bands))

        if not self.wfs:
            if parsize == 'domain only': #XXX this was silly!
                parsize = world.size

            domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(parsize,
                parsize_bands, nspins, kd.nibzkpts, world, par.idiotproof)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError("I'm confused - please specify parsize."
                                       )
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                self.wfs = LCAOWaveFunctions(lcaoksl, *args)
            elif par.mode == 'fd' or isinstance(par.mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = par.parallel['sl_default']
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = par.parallel['sl_default']
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
                assert nbands <= nao or bd.comm.size == 1
                assert lcaobd.mynbands == min(bd.mynbands, nao) #XXX

                # Layouts used for general diagonalizer (LCAO initialization)
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, lcaobd, dtype, 
                                               nao=nao,
                                               timer=self.timer)

                if par.mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = par.mode(diagksl, orthoksl, initksl,
                                        gd, nvalence, setups, bd,
                                        world, kd, self.timer)
            else:
                self.wfs = par.mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, par.mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd
            self.density = Density(gd, finegd, nspins,
                                   par.charge + setups.core_charge)

        self.density.initialize(setups, par.stencils[1], self.timer,
                                magmom_a, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            self.hamiltonian = Hamiltonian(gd, finegd, nspins,
                                           setups, par.stencils[1], self.timer,
                                           xc, par.poissonsolver,
                                           par.external)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        if dry_run:
            self.dry_run()

        self.initialized = True