Esempio n. 1
0
def test_robust_max_multiclass_symmetric(num_classes, num_points, tol,
                                         epsilon):
    """
    This test is based on the observation that for
    symmetric inputs the class predictions must have equal probability.
    """
    rng = np.random.RandomState(1)
    p = 1. / num_classes
    F = tf.ones((num_points, num_classes), dtype=default_float())
    Y = tf.convert_to_tensor(rng.randint(num_classes, size=(num_points, 1)),
                             dtype=default_float())

    likelihood = MultiClass(num_classes)
    likelihood.invlink.epsilon = tf.convert_to_tensor(epsilon,
                                                      dtype=default_float())

    mu, _ = likelihood.predict_mean_and_var(F, F)
    pred = likelihood.predict_density(F, F, Y)
    variational_expectations = likelihood.variational_expectations(F, F, Y)

    expected_mu = (p * (1. - epsilon) + (1. - p) * epsilon /
                   (num_classes - 1)) * np.ones((num_points, 1))
    expected_log_density = np.log(expected_mu)

    # assert_allclose() would complain about shape mismatch
    assert (np.allclose(mu, expected_mu, tol, tol))
    assert (np.allclose(pred, expected_log_density, 1e-3, 1e-3))

    validation_variational_expectation = (p * np.log(1. - epsilon) +
                                          (1. - p) * np.log(epsilon /
                                                            (num_classes - 1)))
    assert_allclose(
        variational_expectations,
        np.ones((num_points, 1)) * validation_variational_expectation, tol,
        tol)
Esempio n. 2
0
def test_robust_max_multiclass_predict_density(num_classes, num_points,
                                               mock_prob, expected_prediction,
                                               tol, epsilon):
    class MockRobustMax(gpflow.likelihoods.RobustMax):
        def prob_is_largest(self, Y, Fmu, Fvar, gh_x, gh_w):
            return tf.ones((num_points, 1), dtype=default_float()) * mock_prob

    likelihood = MultiClass(num_classes,
                            invlink=MockRobustMax(num_classes, epsilon))
    F = tf.ones((num_points, num_classes))
    rng = np.random.RandomState(1)
    Y = tf.cast(rng.randint(num_classes, size=(num_points, 1)),
                dtype=default_int())
    prediction = likelihood.predict_density(F, F, Y)

    assert_allclose(prediction, expected_prediction, tol, tol)