Esempio n. 1
0
    def _build_stochastic_x1_cross_entropy(self,
                                           qx1_samples,
                                           batch_indices=None):
        diag_px1 = self.px1_cov_chol.shape.ndims == 1 or self.multi_diag_px1_cov
        if self.multi_diag_px1_cov or self.px1_cov_chol.shape.ndims == 3:
            x1_ce = 0.
            for s in range(
                    self.n_seq if batch_indices is None else self.batch_size):
                b_s = s if batch_indices is None else batch_indices[s]
                _px1_mu = self.px1_mu if self.px1_mu.shape.ndims == 1 else self.px1_mu[
                    b_s]
                if diag_px1:
                    _x1_ce = diag_mvn_logp(qx1_samples[s] - _px1_mu,
                                           self.px1_cov_chol[b_s])
                else:
                    _x1_ce = mvn_logp(tf.transpose(qx1_samples[s] - _px1_mu),
                                      self.px1_cov_chol[b_s])
                x1_ce += tf.reduce_mean(_x1_ce)
        else:
            _px1_mu = self.px1_mu if self.px1_mu.shape.ndims == 1 else self.px1_mu[:,
                                                                                   None, :]
            if diag_px1:
                x1_ce = diag_mvn_logp(qx1_samples - _px1_mu, self.px1_cov_chol)
            else:
                x1_ce = mvn_logp(
                    tf.transpose(qx1_samples - _px1_mu, [2, 0, 1]),
                    self.px1_cov_chol)
            x1_ce = tf.reduce_sum(tf.reduce_mean(x1_ce, -1))

        if batch_indices is not None:
            x1_ce *= float(self.n_seq) / float(self.batch_size)
        return -x1_ce
Esempio n. 2
0
 def logp(self, X, inputs=None):
     d = X[..., 1:, :] - self.conditional_mean(X[..., :-1, :], inputs=inputs)
     if self.Qchol.shape.ndims == 2:
         dim_perm = [2, 0, 1] if X.shape.ndims == 3 else [1, 0]
         return mvn_logp(tf.transpose(d, dim_perm), self.Qchol)
     elif self.Qchol.shape.ndims == 1:
         return diag_mvn_logp(d, self.Qchol)
 def logp(self, X, Y):
     """
     :param X: latent state (T x E) or (n_samples x T x E)
     :param Y: observations (T x D)
     :return: \log P(Y|X(n)) (T) or (n_samples x T)
     """
     d = Y - self.conditional_mean(X)
     dim_perm = [2, 0, 1] if X.shape.ndims == 3 else [1, 0]
     return mvn_logp(tf.transpose(d, dim_perm), tf.ones([1,1], dtype = tf.float64)*tf.sqrt(self.noise))
Esempio n. 4
0
 def logp(self, X, Y):
     """
     :param X: latent state (T x E) or (n_samples x T x E)
     :param Y: observations (T x D)
     :return: \log P(Y|X(n)) (T) or (n_samples x T)
     """
     d = Y - self.conditional_mean(X)
     dim_perm = [2, 0, 1] if X.shape.ndims == 3 else [1, 0]
     return mvn_logp(tf.transpose(d, dim_perm), self.Rchol)
Esempio n. 5
0
 def _build_stochastic_x1_cross_entropy(self, qx1_samples):
     return -tf.reduce_mean(
         mvn_logp(tf.transpose(qx1_samples - self.px1_mu),
                  self.px1_cov_chol))