def __init__(self,
                 input_dim,
                 locs_poi,
                 typeIndicator,
                 active_dims=None,
                 name=None,
                 typIdx=1,
                 lengthscale=None,
                 effects=None,
                 locs=None,
                 mindist=0.5,
                 kernel_type="linear"):
        super().__init__(input_dim, active_dims, name=name)
        effects = np.random.uniform(low=0.5,
                                    high=1.0) if effects is None else effects
        MeanFunction.__init__(self)
        self.locs_poi = locs_poi.astype(np.float64)
        self.typeIndicator = typeIndicator.astype(np.float64)
        self.typIdx = typIdx
        self.locs_poi_j = self.locs_poi[self.typeIndicator[:, self.typIdx] ==
                                        1, :]
        self.kernel_type = kernel_type

        self.lengthscale = 0  #Parameter(2, transform=transforms.Logistic(a=mindist, b=10), dtype=settings.float_type)
        self.effects = Parameter(effects,
                                 transform=transforms.Logistic(a=0.01, b=1),
                                 dtype=settings.float_type)
        self.distmax = Parameter(0.5,
                                 transform=transforms.Logistic(a=0, b=1.5),
                                 dtype=settings.float_type)
Esempio n. 2
0
 def __init__(self, mu=None, lengthscale=None, signal_variance=None):
     mu = np.zeros(1) if mu is None else mu
     lengthscale = 0.2 * np.ones(1) if lengthscale is None else lengthscale
     signal_variance = 3 * np.ones(
         1) if signal_variance is None else signal_variance
     MeanFunction.__init__(self)
     self.signal_variance = Param(signal_variance, transforms.positive)
     self.lengthscale = Param(lengthscale, transforms.positive)
     self.mu = Param(mu)
 def __init__(self, A=None, p=None):
     """
     A is a matrix which maps each element of X to Y, b is an additive
     constant.
     If X has N rows and D columns, and Y is intended to have Q columns,
     then A must be D x Q, b must be a vector of length Q.
     """
     A = np.ones((1, 1)) if A is None else A
     MeanFunction.__init__(self)
     self.A = Parameter(np.atleast_2d(A), dtype=settings.float_type)
     self.p = p
    def __init__(self, p=None):
        """
        A is a matrix which maps each element of X to Y, b is an additive
        constant.
        If X has N rows and D columns, and Y is intended to have Q columns,
        then A must be D x Q, b must be a vector of length Q.
        """
        MeanFunction.__init__(self)
        self.p = p

        weights1 = np.random.rand(p, 4)
        weights2 = np.random.rand(4, 1)

        self.weights1 = Parameter(weights1, dtype=settings.float_type)
        self.weights2 = Parameter(weights2, dtype=settings.float_type)
Esempio n. 5
0
    def __init__(self, p=None):
        """
        A is a matrix which maps each element of X to Y, b is an additive
        constant.
        If X has N rows and D columns, and Y is intended to have Q columns,
        then A must be D x Q, b must be a vector of length Q.
        """
        MeanFunction.__init__(self)
        self.p = p

        hidden_units = 8

        bias1 = 1
        bias2 = 1

        weights1 = np.zeros((p, hidden_units))
        weights2 = np.zeros((hidden_units, 1))

        self.weights1 = Parameter(weights1, dtype=settings.float_type)
        self.weights2 = Parameter(weights2, dtype=settings.float_type)

        self.bias1 = Parameter(bias1, dtype=settings.float_type)
        self.bias2 = Parameter(bias2, dtype=settings.float_type)
Esempio n. 6
0
 def __init__(self, W, b, trainable=False):
     MeanFunction.__init__(self)
     self.W = Parameter(W, trainable=trainable)
     self.b = Parameter(b, trainable=trainable)
     self.trainable = trainable
Esempio n. 7
0
 def __init__(self, alpha=1):
     MeanFunction.__init__(self)
     self.alpha = Parameter(alpha, dtype=settings.float_type)
Esempio n. 8
0
 def __init__(self):
     MeanFunction.__init__(self)
Esempio n. 9
0
 def __init__(self, A=None, mu=None):
     A = np.ones(1) if A is None else A
     mu = np.zeros(1) if mu is None else mu
     MeanFunction.__init__(self)
     self.A = Param(A)
     self.mu = Param(mu)