Esempio n. 1
0
def gen_737_plots(sol):
    """
    function to generate plots of interesting values
    """
    rng = np.cumsum(mag(sol('R_{segment}')))
    alt = mag(sol('hft'))

    #generate an altitude profile plot
    tasrng = [
        0, 13.68, 31.34, 59.96, 115.05, 115.05, 2875.38, 2875.38, 2906.56,
        2937.74, 2968.92, 3000
    ]
    tasalt = [
        0, 8750, 17500, 26250, 35000, 35000, 39677.3, 39677.3, 29758., 19838.6,
        9919.3, 0
    ]

    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4, fontsize=18)
    plt.ylabel('Altitude [ft]', fontsize=22)
    plt.xlabel('Down Range Distance [nm]', fontsize=22)
    plt.title('737 Altitude Profile', fontsize=22)
    plt.tick_params(axis='both', which='major', labelsize=16)
    plt.tick_params(axis='both', which='minor', labelsize=16)
    plt.savefig('737_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 2
0
def gen_D82_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rng = mag(sol('R_{segment}'))
    alt = mag(sol('hft'))
    rng = np.cumsum(rng)

    tasrng = [
        0, 11.51, 27.36, 52.64, 103.28, 103.28, 2825.41, 2825.41, 2869.08,
        2912.76, 2956.43, 3000
    ]
    tasalt = [
        0, 9619.5, 19239.0, 28858.5, 38478.0, 38478.0, 41681.3, 41681.3,
        32129.3, 21998.5, 11288.7, 0
    ]

    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4, fontsize=18)
    plt.ylabel('Altitude [ft]', fontsize=22)
    plt.xlabel('Down Range Distance [nm]', fontsize=22)
    plt.title('D8.2 Altitude Profile', fontsize=22)
    plt.ylim([0, 46000])
    plt.tick_params(axis='both', which='major', labelsize=16)
    plt.tick_params(axis='both', which='minor', labelsize=16)
    plt.savefig('D8_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 3
0
def gen_777_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    tasrng = [
        0, 15.6, 33.24, 60.40, 107.98, 107.98, 5850.37, 5850.37, 5887.82,
        5925.28, 5962.74, 6000
    ]
    tasalt = [
        0, 7994.2, 15988.5, 23982.8, 31977.0, 31977.0, 39723.4, 39723.4,
        31282.2, 21847.9, 11420.5, 0
    ]

    rng = np.cumsum(mag(sol('R_{segment}')))
    alt = mag(sol('hft'))

    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4, fontsize=18)
    plt.ylabel('Altitude [ft]', fontsize=22)
    plt.xlabel('Down Range Distance [nm]', fontsize=22)
    plt.title('777 Altitude Profile', fontsize=22)
    plt.tick_params(axis='both', which='major', labelsize=16)
    plt.tick_params(axis='both', which='minor', labelsize=16)
    plt.savefig('777_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 4
0
def gen_D82_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rng = [0]
    alt = [0]
    for i in range(len(sol('R_{climb}'))):
        rng.append(mag(sol('R_{climb}')[i][0]))
    for i in range(len(sol('R_{cruise}'))):
        rng.append(mag(sol('R_{cruise}')[i][0]))
    for i in range(len(sol('hft')['hft_Mission/FlightState/Altitude'])):
        alt.append(mag(sol('hft')['hft_Mission/FlightState/Altitude'][i][0]))
    rng = np.cumsum(rng)

    tasrng = [
        0, 11.51, 27.36, 52.64, 103.28, 103.28, 2825.41, 2825.41, 2869.08,
        2912.76, 2956.43, 3000
    ]
    tasalt = [
        0, 9619.5, 19239.0, 28858.5, 38478.0, 38478.0, 41681.3, 41681.3,
        32129.3, 21998.5, 11288.7, 0
    ]

    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('D8.2 Altitude Profile')
    plt.ylim([0, 46000])
    plt.savefig('D8_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 5
0
def generate_radar_data(solutions, objectives, keyOrder, baseobj):
    # Generating data amenable to radar plotting
    data = []
    data.append(
        [objectives[keyOrder[j]]['name'] for j in range(len(keyOrder))])

    maxesindata = np.zeros(len(objectives))
    minsindata = 10.**8 * np.ones(len(objectives))
    counti = 0
    for i in range(len(keyOrder)):
        case = objectives[keyOrder[i]]['name']
        caseData = [[] for j in range(len(solutions[counti]))]
        for j in range(len(solutions[counti])):
            countk = 0
            for k in range(len(keyOrder)):
                caseData[j].append(mag(solutions[counti][j](keyOrder[k])))
                if mag(solutions[counti][j](
                        keyOrder[k])) >= maxesindata[countk]:
                    maxesindata[countk] = mag(solutions[counti][j](
                        keyOrder[k]))
                if mag(solutions[counti][j](
                        keyOrder[k])) <= minsindata[countk]:
                    minsindata[countk] = mag(solutions[counti][j](keyOrder[k]))
                countk += 1
        data.append((case, caseData))
        counti += 1
Esempio n. 6
0
def gen_737_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    tasrng = [
        0, 13.68, 31.34, 59.96, 115.05, 115.05, 2875.38, 2875.38, 2906.56,
        2937.74, 2968.92, 3000
    ]
    tasalt = [
        0, 8750, 17500, 26250, 35000, 35000, 39677.3, 39677.3, 29758., 19838.6,
        9919.3, 0
    ]

    rng = [0]
    alt = [0]

    for i in range(len(sol('R_{climb}'))):
        rng.append(mag(sol('R_{climb}')[i][0]))
    for i in range(len(sol('R_{cruise}'))):
        rng.append(mag(sol('R_{cruise}')[i][0]))
    for i in range(len(sol('hft')['hft_Mission/FlightState/Altitude'])):
        alt.append(mag(sol('hft')['hft_Mission/FlightState/Altitude'][i][0]))
    rng = np.cumsum(rng)
    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('737 Altitude Profile', fontsize=18)
    plt.savefig('737_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 7
0
def post_compute(sol, Nclimb):
    eta_P_fan = 2 / (
        1 + 1.94384 * mag(sol('u_{8}')[Nclimb]) / mag(sol('V')[Nclimb]))

    print "Fan Propulsive Efficiency in Cruise Segment 1"
    print "---------------------"
    print eta_P_fan
Esempio n. 8
0
def plot_star(nPoints, r_sol, l, title='Star'):
    fig = plt.figure()
    ax = plt.axes(projection='3d')
    nx = len(r_sol('A'))
    nt = len(r_sol('A')[0])
    r_o = mag(r_sol('r_o'))
    r_i = mag(r_sol('r_i'))
    x = np.linspace(0, l, nx)
    theta = np.linspace(0, 2 * np.pi, 2 * nPoints + 1)
    X, Theta = np.meshgrid(x, theta)
    plt.rc('axes',
           prop_cycle=(cycler('color', ['r', 'g', 'b', 'y']) +
                       cycler('linestyle', ['-', '--', ':', '-.'])))
    for i in range(nt):
        r_o_s = r_o[:, i]
        r_i_s = r_i[:, i]
        O, Theta = np.meshgrid(r_o_s, theta)
        I, Theta = np.meshgrid(r_i_s, theta)
        Z = I + np.ceil(np.mod(Theta, 2 * np.pi / nPoints)) * (O - I)
        ax.contour3D(X,
                     Z * np.sin(Theta),
                     Z * np.cos(Theta),
                     50,
                     cmap='binary')
    plt.xlabel('Axial coordinate')
    plt.ylabel('Radial coordinate')
    plt.title(title)
    plt.show()
Esempio n. 9
0
def gen_777_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    tasrng = [
        0, 15.6, 33.24, 60.40, 107.98, 107.98, 5850.37, 5850.37, 5887.82,
        5925.28, 5962.74, 6000
    ]
    tasalt = [
        0, 7994.2, 15988.5, 23982.8, 31977.0, 31977.0, 39723.4, 39723.4,
        31282.2, 21847.9, 11420.5, 0
    ]

    rng = [0]
    alt = [0]

    for i in range(len(sol('R_{climb}'))):
        rng.append(mag(sol('R_{climb}')[i][0]))
    for i in range(len(sol('R_{cruise}'))):
        rng.append(mag(sol('R_{cruise}')[i][0]))
    for i in range(len(sol('hft')['hft_Mission/FlightState/Altitude'])):
        alt.append(mag(sol('hft')['hft_Mission/FlightState/Altitude'][i][0]))

    rng = np.cumsum(rng)
    plt.plot(rng, alt)
    plt.plot(tasrng, tasalt)
    plt.legend(['SP Model', 'TASOPT'], loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('777 Altitude Profile')
    plt.savefig('777_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 10
0
def allocate_fuel(sol, m, relaxDict, nt, nx):
    """
    :param sol: rocket solution
    :param m: rocket model
    :param relaxDict: dictionary of relaxations of model
    :param nt: time steps
    :param nx: spatial discretization
    :return: mass proportions of propellant, accelerant and filler material
    """
    # Mapping solution values
    T_amb = sol(m.section.T_amb)
    T = sol(m.section.T)
    u = sol(m.section.u)
    c_p = sol(m.section.c_p)
    T_t = [[] for i in range(nx)]
    for i in range(nt):
        for j in range(nx):
            T_t[j].append((T[j, i] + u[j, i]**2 / (2 * c_p[i])))
    mdot = sol(m.section.mdot)
    q = sol(m.section.q)
    k_comb_p = sol(m.section.k_comb_p)

    # Porosity of fuel
    porosity = relaxDict['massCons']

    # Computing relative burn rate...
    q_comb = [[] for i in range(nx)]
    for i in range(nt):
        for j in range(nx):
            if j >= 1:
                q_comb[j].append(
                    np.round(mag(
                        ((T_t[j][i]) * mdot[j, i] - q[j, i] * T_amb[i] -
                         T_t[j][i - 1] * mdot[j, i - 1]) * c_p[i] /
                        k_comb_p[i]),
                             decimals=2))
            else:
                q_comb[j].append(
                    np.round(mag(
                        (T_t[j][i] * mdot[j, i] - q[j, i] * T_amb[i]) *
                        c_p[i] / k_comb_p[i]),
                             decimals=2))

    # Since this isn't working properly, we hack and offset q_comb
    q_min = np.min(q_comb)
    qratmin = np.min(mag(q_comb / q))
    q_comb = q_comb - (qratmin) * mag(q)
    qrat = mag(q_comb / q)  # Sum of propellant+accelerant ratios
    beta_f = np.ones((nx, nt)) - qrat - porosity  # Filler ratio

    # Use burn rate relaxation to obtain beta_a and beta_p
    beta_p = 1 / (np.ones((nx, nt)) + relaxDict['burnRate']) * qrat
    beta_a = np.ones((nx, nt)) - beta_p - beta_f
    return beta_p, beta_a, beta_f, porosity
def plot_general_solutions(solarray, var1, var2, var3):
    points = ["o","*","-"]
    count = 0
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for i in solarray:
        ax.plot(mag(i(var1.key)), mag(i(var2.key)),mag(i(var3.key)))
        count+=1
    ax.set_xlabel(var1.str_without())
    ax.set_ylabel(var2.str_without())
    ax.set_zlabel(var3.str_without())
    plt.title('3D Flight envelope')
    plt.show()
Esempio n. 12
0
def gen_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rng = np.cumsum(mag(sol('R_{segment}')))
    alt = mag(sol('hft'))
    plt.plot(rng, alt)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance', fontsize=18)
    plt.title('Aircraft Altitude Profile')
    plt.show()
Esempio n. 13
0
def make_initial_guess(model, newlist, guesstype='ones'):
    """Returns initial guess"""
    try:
        sol = model.solve(verbosity=0)
    except TypeError:
        sol = model.localsolve(verbosity=0)
    if guesstype == "ones":
        x0string = ["x0 = ones({0},1);\n".format(len(sol['freevariables']))]
    else:
        x0string = ["x0 = ["]
        i = 1
        for vk in newlist:
            xf = mag(sol['freevariables'][vk])
            if guesstype == "almost-exact-solution":
                x0 = round(xf, -int(floor(log10(abs(xf)))))  # rounds to 1sf
            elif guesstype == "order-of-magnitude-floor":
                x0 = 10**floor(log10(xf))
            elif guesstype == "order-of-magnitude-round":
                x0 = 10**round(log10(xf))
            else:
                raise Exception("Unexpected guess type")
            x0string += [str(x0) + ", "]
            i += 1
        x0string += ["];\n"]

    return "".join(x0string)
Esempio n. 14
0
 def test_simpleflight(self, example):
     self.assertTrue(example.sol.almost_equal(example.sol_loaded))
     for sol in [example.sol, example.sol_loaded]:
         freevarcheck = {
             "A": 8.46,
             "C_D": 0.0206,
             "C_f": 0.0036,
             "C_L": 0.499,
             "Re": 3.68e+06,
             "S": 16.4,
             "W": 7.34e+03,
             "V": 38.2,
             "W_w": 2.40e+03
         }
         # sensitivity values from p. 34 of W. Hoburg's thesis
         senscheck = {
             r"(\frac{S}{S_{wet}})": 0.4300,
             "e": -0.4785,
             "V_{min}": -0.3691,
             "k": 0.4300,
             r"\mu": 0.0860,
             "(CDA0)": 0.0915,
             "C_{L,max}": -0.1845,
             r"\tau": -0.2903,
             "N_{ult}": 0.2903,
             "W_0": 1.0107,
             r"\rho": -0.2275
         }
         for key in freevarcheck:
             sol_rat = mag(sol["variables"][key])/freevarcheck[key]
             self.assertTrue(abs(1-sol_rat) < 1e-2)
         for key in senscheck:
             sol_rat = sol["sensitivities"]["variables"][key]/senscheck[key]
             self.assertTrue(abs(1-sol_rat) < 1e-2)
Esempio n. 15
0
 def test_simpleflight(self, example):
     sol = example.sol
     freevarcheck = dict(A=8.46,
                         C_D=0.0206,
                         C_f=0.0036,
                         C_L=0.499,
                         Re=3.68e+06,
                         S=16.4,
                         W=7.34e+03,
                         V=38.2,
                         W_w=2.40e+03)
     # sensitivity values from p. 34 of W. Hoburg's thesis
     consenscheck = {r"(\frac{S}{S_{wet}})": 0.4300,
                     "e": -0.4785,
                     "V_{min}": -0.3691,
                     "k": 0.4300,
                     r"\mu": 0.0860,
                     "(CDA0)": 0.0915,
                     "C_{L,max}": -0.1845,
                     r"\tau": -0.2903,
                     "N_{ult}": 0.2903,
                     "W_0": 1.0107,
                     r"\rho": -0.2275}
     for key in freevarcheck:
         sol_rat = mag(sol["variables"][key])/freevarcheck[key]
         self.assertTrue(abs(1-sol_rat) < 1e-2)
     for key in consenscheck:
         sol_rat = sol["sensitivities"]["constants"][key]/consenscheck[key]
         self.assertTrue(abs(1-sol_rat) < 1e-2)
Esempio n. 16
0
def map_relaxations(groupedDict, nt, nx, decimals = 3):
    strkeys = groupedDict.keys()
    relaxDict = {i:None for i in strkeys}
    for i in strkeys:
        dim = len(groupedDict[i])
        nd = groupedDict[i]
        # Mapping relaxations in time and space
        dim1, dim2 = [0,0]
        if dim == nx*nt:
            [dim1,dim2] = [nt,nx]
        elif dim == nt:
            [dim1,dim2] = [nt, 1]
        elif dim == nx:
            [dim1,dim2] = [1, nx]
        # Special cases where monomials (always tight) replace posys
        # in the first section
        elif dim == (nx-1)*nt and i == 'massCons':
            [dim1,dim2] = [nt, nx]
            a = np.array(nd)[:,0].reshape((nt, nx-1))
            nd = np.concatenate((np.zeros((nt,1))*units(''), a), axis=1)
            nd = nd.reshape((nx*nt,1))
        else:
            print 'Warning: tight constraint that does not' \
                  ' obey the specified relaxations detected.'
        nd = [mag(j) for j in np.array(nd)[:,0]]
        nd = np.array(nd).reshape((dim2, dim1))
        relaxDict[i] = np.round(nd, decimals=decimals)
    return relaxDict
Esempio n. 17
0
 def test_simpleflight(self, example):
     sol = example.sol
     freevarcheck = dict(A=8.46,
                         C_D=0.0206,
                         C_f=0.0036,
                         C_L=0.499,
                         Re=3.68e+06,
                         S=16.4,
                         W=7.34e+03,
                         V=38.2,
                         W_w=2.40e+03)
     # sensitivity values from p. 34 of W. Hoburg's thesis
     consenscheck = {r"(\frac{S}{S_{wet}})": 0.4300,
                     "e": -0.4785,
                     "V_{min}": -0.3691,
                     "k": 0.4300,
                     r"\mu": 0.0860,
                     "(CDA0)": 0.0915,
                     "C_{L,max}": -0.1845,
                     r"\tau": -0.2903,
                     "N_{ult}": 0.2903,
                     "W_0": 1.0107,
                     r"\rho": -0.2275}
     for key in freevarcheck:
         sol_rat = mag(sol["variables"][key])/freevarcheck[key]
         self.assertTrue(abs(1-sol_rat) < 1e-2)
     for key in consenscheck:
         sol_rat = sol["sensitivities"]["constants"][key]/consenscheck[key]
         self.assertTrue(abs(1-sol_rat) < 1e-2)
Esempio n. 18
0
 def test_simpleflight(self, example):
     self.assertTrue(example.sol.almost_equal(example.sol_loaded))
     for sol in [example.sol, example.sol_loaded]:
         freevarcheck = {
             "A": 8.46,
             "C_D": 0.0206,
             "C_f": 0.0036,
             "C_L": 0.499,
             "Re": 3.68e+06,
             "S": 16.4,
             "W": 7.34e+03,
             "V": 38.2,
             "W_w": 2.40e+03
         }
         # sensitivity values from p. 34 of W. Hoburg's thesis
         senscheck = {
             r"(\frac{S}{S_{wet}})": 0.4300,
             "e": -0.4785,
             "V_{min}": -0.3691,
             "k": 0.4300,
             r"\mu": 0.0860,
             "(CDA0)": 0.0915,
             "C_{L,max}": -0.1845,
             r"\tau": -0.2903,
             "N_{ult}": 0.2903,
             "W_0": 1.0107,
             r"\rho": -0.2275
         }
         for key in freevarcheck:
             sol_rat = mag(sol["variables"][key])/freevarcheck[key]
             self.assertTrue(abs(1-sol_rat) < 1e-2)
         for key in senscheck:
             sol_rat = sol["sensitivities"]["constants"][key]/senscheck[key]
             self.assertTrue(abs(1-sol_rat) < 1e-2)
Esempio n. 19
0
def make_initial_guess(model, newlist, guesstype='ones'):
    """Returns initial guess"""
    try:
        sol = model.solve(verbosity=0)
    except TypeError:
        sol = model.localsolve(verbosity=0)
    if guesstype == "ones":
        x0string = ["x0 = ones({0},1);\n".format(len(sol['freevariables']))]
    else:
        x0string = ["x0 = ["]
        i = 1
        for vk in newlist:
            xf = mag(sol['freevariables'][vk])
            if guesstype == "almost-exact-solution":
                x0 = round(xf, -int(floor(log10(abs(xf))))) # rounds to 1sf
            elif guesstype == "order-of-magnitude-floor":
                x0 = 10**floor(log10(xf))
            elif guesstype == "order-of-magnitude-round":
                x0 = 10**round(log10(xf))
            else:
                raise Exception("Unexpected guess type")
            x0string += [str(x0) + ", "]
            i += 1
        x0string += ["];\n"]

    return "".join(x0string)
Esempio n. 20
0
def draw_network(sol, coordinates):
    # Draws a general flow network (GI)
    N = len(coordinates)
    topology_list = []
    n_edges = sum(sum(sol('x') > 1e-10))
    prunedsol = {'q':[], 'D':[], '\dot{V}_+':[], '\dot{V}_-': []}
    for i in range(N):
        for j in range(N):
            if sol('x')[i][j] >= 1e-10:
                topology_list.append([i,j])
                prunedsol['q'] = prunedsol['q'] + [mag(sol('q')[i][j])]
                prunedsol['D'] = prunedsol['D'] + [mag(sol('D')[i][j])]
    prunedsol['\dot{V}_+'] = sol('\dot{V}_+')
    prunedsol['\dot{V}_-'] = sol('\dot{V}_-')
    print(prunedsol)
    topology_dict = {i:topology_list[i] for i in range(len(topology_list))}
    draw_KT_network(prunedsol, coordinates, topology_dict)
Esempio n. 21
0
def signomial_print(sig, sol, colorfn, paintby="constants", idx=None):
    "For pretty printing with Sympy"
    mstrs = []
    for c, exp in zip(sig.cs, sig.exps):
        pos_vars, neg_vars = [], []
        for var, x in exp.items():
            varlatex = var.latex()
            if paintby == "constants":
                senss = (sol["sensitivities"]["constants"][var]
                         if var in sol["sensitivities"]["constants"] else 0.0)
                colorstr = colorfn(senss)
                varlatex = "\\textcolor%s{%s}" % (colorstr, varlatex)
            if x > 0:
                pos_vars.append((varlatex, x))
            elif x < 0:
                neg_vars.append((varlatex, x))

        pvarstrs = [
            '%s^{%.2g}' % (varl, x) if "%.2g" % x != "1" else varl
            for (varl, x) in pos_vars
        ]
        nvarstrs = [
            '%s^{%.2g}' % (varl, -x) if "%.2g" % -x != "1" else varl
            for (varl, x) in neg_vars
        ]
        pvarstrs.sort()
        nvarstrs.sort()
        pvarstr = ' '.join(pvarstrs)
        nvarstr = ' '.join(nvarstrs)
        c = mag(c)
        cstr = "%.2g" % c
        if pos_vars and (cstr == "1" or cstr == "-1"):
            cstr = cstr[:-1]
        else:
            cstr = latex_num(c)

        if not pos_vars and not neg_vars:
            mstr = "%s" % cstr
        elif pos_vars and not neg_vars:
            mstr = "%s%s" % (cstr, pvarstr)
        elif neg_vars and not pos_vars:
            mstr = "\\frac{%s}{%s}" % (cstr, nvarstr)
        elif pos_vars and neg_vars:
            mstr = "%s\\frac{%s}{%s}" % (cstr, pvarstr, nvarstr)

        mstrs.append(mstr)

    if paintby == "monomials":
        mstrs_ = []
        for mstr in mstrs:
            senss = sol["sensitivities"]["monomials"][idx]
            idx += 1
            colorstr = colorfn(senss)
            mstrs_.append("\\textcolor%s{%s}" % (colorstr, mstr))
        return " + ".join(sorted(mstrs_)), idx
    else:
        return " + ".join(sorted(mstrs))
Esempio n. 22
0
def gen_D8_D8_no_BLI_plots(solD8, solno_BLI):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rngD8 = np.cumsum(mag(solD8('R_{segment}')))
    altD8 = mag(solD8('hft'))
    rngno_BLI = np.cumsum(mag(solno_BLI('R_{segment}')))
    altno_BLI = mag(solno_BLI('hft'))

    plt.plot(rngD8, altD8)
    plt.plot(rngno_BLI, altno_BLI)
    plt.legend(['D8', 'D8 w/out BLI (rear podded engines)'], loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('D8 Altitude Profile with and without BLI')
    plt.savefig('D8_D8_no_BLI_altitude_profile.pdf', bbox_inches="tight")
    plt.show()
Esempio n. 23
0
def signomial_print(sig, sol, colorfn, paintby="constants", idx=None):
    "For pretty printing with Sympy"
    mstrs = []
    for c, exp in zip(sig.cs, sig.exps):
        pos_vars, neg_vars = [], []
        for var, x in exp.items():
            varlatex = var.latex()
            if paintby == "constants":
                senss = (sol["sensitivities"]["constants"][var]
                         if var in sol["sensitivities"]["constants"]
                         else 0.0)
                colorstr = colorfn(senss)
                varlatex = "\\textcolor%s{%s}" % (colorstr, varlatex)
            if x > 0:
                pos_vars.append((varlatex, x))
            elif x < 0:
                neg_vars.append((varlatex, x))

        pvarstrs = ['%s^{%.2g}' % (varl, x) if "%.2g" % x != "1" else varl
                    for (varl, x) in pos_vars]
        nvarstrs = ['%s^{%.2g}' % (varl, -x)
                    if "%.2g" % -x != "1" else varl
                    for (varl, x) in neg_vars]
        pvarstrs.sort()
        nvarstrs.sort()
        pvarstr = ' '.join(pvarstrs)
        nvarstr = ' '.join(nvarstrs)
        c = mag(c)
        cstr = "%.2g" % c
        if pos_vars and (cstr == "1" or cstr == "-1"):
            cstr = cstr[:-1]
        else:
            cstr = latex_num(c)

        if not pos_vars and not neg_vars:
            mstr = "%s" % cstr
        elif pos_vars and not neg_vars:
            mstr = "%s%s" % (cstr, pvarstr)
        elif neg_vars and not pos_vars:
            mstr = "\\frac{%s}{%s}" % (cstr, nvarstr)
        elif pos_vars and neg_vars:
            mstr = "%s\\frac{%s}{%s}" % (cstr, pvarstr, nvarstr)

        mstrs.append(mstr)

    if paintby == "monomials":
        mstrs_ = []
        for mstr in mstrs:
            senss = sol["sensitivities"]["monomials"][idx]
            idx += 1
            colorstr = colorfn(senss)
            mstrs_.append("\\textcolor%s{%s}" % (colorstr, mstr))
        return " + ".join(sorted(mstrs_)), idx
    else:
        return " + ".join(sorted(mstrs))
Esempio n. 24
0
 def update(self, solution):
     "Update the chart based upon a new solution"
     valuedict = solution["variables"]
     if self.updates == 0:  # first update
         self.create_jsobj(valuedict)
     else:
         updates = ""
         for i, varname in enumerate(self.varnames):
             updates += ("%s.datasets[0].bars[%i].value = %f \n" %
                         (self.name, i, mag(valuedict[varname])))
         display(Javascript(updates + "%s.update()" % self.name))
     self.updates += 1
Esempio n. 25
0
def gen_plots(sol):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rng = []
    alt = []
    for i in range(len(sol('R_{climb}'))):
        rng.append(mag(sol('R_{climb}')[i][0]))
    for i in range(len(sol('R_{cruise}'))):
        rng.append(mag(sol('R_{cruise}')[i][0]))
    for i in range(len(sol('hft')['hft_Mission/FlightState/Altitude'])):
        alt.append(mag(sol('hft')['hft_Mission/FlightState/Altitude'][i][0]))
    rng = np.cumsum(rng)
    plt.plot(rng, alt)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance', fontsize=18)
    plt.title('Aircraft Altitude Profile')
    #    plt.savefig('M08_D8_wing_profile_drag.pdf', bbox_inches="tight")
    plt.show()
Esempio n. 26
0
    def test(cls):
        b = cls(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(10)})
        b.zero_lower_unbounded_variables()
        sol = b.solve(verbosity=1)
        w_gp = sol("w")  # deflection along beam

        L, EI, q = sol("L"), sol("EI"), sol("q")
        x = np.linspace(0, mag(L), len(q))*units.m  # position along beam
        q = q[0]  # assume uniform loading for the check below
        w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2)  # analytic soln

        assert max(abs(w_gp - w_exact)) <= 1e-2*units.m
Esempio n. 27
0
 def update(self, solution):
     "Update the chart based upon a new solution"
     valuedict = solution["variables"]
     if self.updates == 0:  # first update
         self.create_jsobj(valuedict)
     else:
         updates = ""
         for i, varname in enumerate(self.varnames):
             updates += ("%s.datasets[0].bars[%i].value = %f \n"
                         % (self.name, i, mag(valuedict[varname])))
         display(Javascript(updates + "%s.update()" % self.name))
     self.updates += 1
def generate_flight_envelope(m, var1, var2, var1range, rm = None, rmsol = None):
    """
    Generates the flight envelope of an optimized aircraft
    This is a method to compare the objective trade-off performance
    of an already designed aircraft (nominal and robust)
    Want to MAXIMIZE both var1 and var2 (bigger envelope)
    :param m: already solved model
    :param var1: independent variable
    :param var2: dependent variable (should be maximized)
    :param var1range: the range of the independent var
    :param rm: robust version of m
    :param rmsol: solution of rm
    :return: nominal sweep solution, robust sweep solution
    """
    dm = RobustGPTools.DesignedModel(m, m.solution, {})
    if var2.key in list(m.substitutions.keys()):
        del dm.substitutions[var2.key]
    dm.cost = 1/var2 #*var2.units*dm.cost.units #dm.cost/var2 #
    dm.substitutions.update({var1.key:('sweep',var1range)})
    sol = dm.localsolve(skipsweepfailures=True)
    if rm:
        drm = RobustGPTools.DesignedModel(m, rmsol, {})
        if var2.key in list(rm.substitutions.keys()):
            del drm.substitutions[var2.key]
        drm.cost = 1/var2 #drm.cost + 1/var2*var2.units*drm.cost.units #drm.cost/var2
        drm.substitutions.update({var1.key:('sweep',var1range)})
        robustsol = drm.localsolve(skipsweepfailures=True)
    plt.plot(mag(sol(var1.key)),mag(sol(var2.key)))
    try:
        plt.plot(mag(robustsol(var1.key)),mag(robustsol(var2.key)))
        plt.legend(["Nominal", "Robust"])
    except:
        pass
    plt.xlabel(var1.str_without())
    plt.ylabel(var2.str_without())
    plt.title(r'Flight envelope, $\Gamma = 1$')
    plt.grid()
    plt.show()

    return sol, robustsol
Esempio n. 29
0
def gen_D8_737_plots(solD8, sol737):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rngD8 = np.cumsum(mag(solD8('R_{segment}')))
    altD8 = mag(solD8('hft'))
    rng73 = np.cumsum(mag(sol737('R_{segment}')))
    alt73 = mag(sol737('hft'))

    tasrngD8 = [
        0, 11.51, 27.36, 52.64, 103.28, 103.28, 2825.41, 2825.41, 2869.08,
        2912.76, 2956.43, 3000
    ]
    tasaltD8 = [
        0, 9619.5, 19239.0, 28858.5, 38478.0, 38478.0, 41681.3, 41681.3,
        32129.3, 21998.5, 11288.7, 0
    ]

    tasrng73 = [
        0, 13.68, 31.34, 59.96, 115.05, 115.05, 2875.38, 2875.38, 2906.56,
        2937.74, 2968.92, 3000
    ]
    tasalt73 = [
        0, 8750, 17500, 26250, 35000, 35000, 39677.3, 39677.3, 29758., 19838.6,
        9919.3, 0
    ]

    plt.plot(rngD8, altD8)
    plt.plot(tasrngD8, tasaltD8)
    plt.plot(rng73, alt73)
    plt.plot(tasrng73, tasalt73)
    plt.legend(['D8 SP Model', 'D8 TASOPT', '737 SP Model', '737 TASOPT'],
               loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('737 and D8 Altitude Profile', fontsize=18)
    plt.savefig('737_D8_altitude_profile.eps', bbox_inches="tight")
    plt.show()
Esempio n. 30
0
def draw_fuel(sol, m):
    fig = plt.figure()
    ax = plt.axes()
    nx = len(m.section.A_p_in)
    nt = len(m.section.A_p_in[0])
    z = sol(m.section.A_p_in)
    fig, ax = plt.subplots(1, nx)
    for i in range(nx):
        ax[i].pie(z[i] / sum(z[i]),
                  labels=np.linspace(1, nt, nt),
                  radius=mag(z[i, 0]) / max(z.flat))
        ax[i].axis('equal')
    plt.show()
Esempio n. 31
0
    def test_vector(self):
        x = Variable("x")
        y = Variable("y")
        z = VectorVariable(2, "z")
        p = x*y*z
        self.assertTrue(all(p.sub({x: 1, "y": 2}) == 2*z))
        self.assertTrue(all(p.sub({x: 1, y: 2, "z": [1, 2]}) ==
                            z.sub(z, [2, 4])))

        x = VectorVariable(3, "x", "m")
        xs = x[:2].sum()
        for x_ in ["x", x]:
            self.assertAlmostEqual(mag(xs.sub(x_, [1, 2, 3]).c), 3.0)
Esempio n. 32
0
    def test_vector(self):
        x = Variable("x")
        y = Variable("y")
        z = VectorVariable(2, "z")
        p = x*y*z
        self.assertTrue(all(p.sub({x: 1, "y": 2}) == 2*z))
        self.assertTrue(all(p.sub({x: 1, y: 2, "z": [1, 2]}) ==
                            z.sub({z: [2, 4]})))

        xvec = VectorVariable(3, "x", "m")
        xs = xvec[:2].sum()
        for x_ in ["x", xvec]:
            self.assertAlmostEqual(mag(xs.sub({x_: [1, 2, 3]}).c), 3.0)
Esempio n. 33
0
 def __init__(self, bounds, sols, sweptvar, costposy):
     if len(bounds) != 2:
         raise ValueError("bounds must be of length 2.")
     if bounds[1] <= bounds[0]:
         raise ValueError("bounds[0] must be smaller than bounds[1].")
     self.bounds = bounds
     self.sols = sols
     self.costs = log([mag(sol["cost"]) for sol in sols])
     self.splits = None
     self.splitval = None
     self.splitlb = None
     self.splitub = None
     self.sweptvar = sweptvar
     self.costposy = costposy
Esempio n. 34
0
def draw_2D_bar(sol, m, vectorvar, title):
    fig = plt.figure()
    ax = plt.axes(projection='3d')
    nx = len(m.section.A_p_in)
    nt = len(m.section.A_p_in[0])
    x = np.linspace(1, nx, nx)
    y = np.linspace(1, nt, nt)
    X, Y = np.meshgrid(x, y)
    Z = sol(vectorvar)
    for i in range(nt):
        color = [0.5, 0., 1.0 * i / nt]
        ax.bar(x, mag(Z[:, i]), zs=i, zdir='y', alpha=0.5, color=color)
    plt.xlabel('Axial coordinate')
    plt.ylabel('Time step')
    plt.title(title)
    plt.show()
Esempio n. 35
0
 def test_scalar_units(self):
     x = Variable("x", "m")
     xvk = x.key
     y = Variable("y", "km")
     yvk = y.key
     units_exist = bool(x.units)
     for x_ in ["x", xvk, x]:
         for y_ in ["y", yvk, y]:
             if not isinstance(y_, str) and units_exist:
                 expected = 0.001
             else:
                 expected = 1.0
             self.assertAlmostEqual(expected, mag(x.sub(x_, y_).c))
     if units_exist:
         z = Variable("z", "s")
         self.assertRaises(ValueError, y.sub, y, z)
Esempio n. 36
0
 def test_scalar_units(self):
     x = Variable("x", "m")
     xvk = x.key
     y = Variable("y", "km")
     yvk = y.key
     units_exist = bool(x.units)
     for x_ in ["x", xvk, x]:
         for y_ in ["y", yvk, y]:
             if not isinstance(y_, str) and units_exist:
                 expected = 1000.0
             else:
                 expected = 1.0
             self.assertAlmostEqual(expected, mag(x.sub({x_: y_}).c))
     if units_exist:
         z = Variable("z", "s")
         self.assertRaises(ValueError, y.sub, {y: z})
Esempio n. 37
0
def print_simulation_results(the_robust_model, the_robust_model_solution,
                             the_robust_model_solve_time,
                             the_nominal_model_solve_time,
                             the_nominal_no_of_constraints, the_nominal_cost,
                             the_simulation_results, the_file_id):
    the_file_id.write('\t\t\t' + 'Probability of failure: %s\n' %
                      the_simulation_results[0])
    the_file_id.write('\t\t\t' + 'Average performance: %s\n' %
                      mag(the_simulation_results[1]))
    the_file_id.write(
        '\t\t\t' + 'Relative average performance: %s\n' %
        (mag(the_simulation_results[1]) / float(mag(the_nominal_cost))))
    the_file_id.write('\t\t\t' + 'Worst-case performance: %s\n' %
                      mag(the_robust_model_solution['cost']))
    the_file_id.write('\t\t\t' + 'Relative worst-case performance: %s\n' %
                      (mag(the_robust_model_solution['cost']) /
                       float(mag(the_nominal_cost))))
    try:
        number_of_constraints = \
            len([cnstrnt for cnstrnt in the_robust_model.get_robust_model().flat(constraintsets=False)])
    except AttributeError:
        number_of_constraints = \
            len([cnstrnt for cnstrnt in the_robust_model.get_robust_model()[-1].flat(constraintsets=False)])
    the_file_id.write('\t\t\t' +
                      'Number of constraints: %s\n' % number_of_constraints)
    the_file_id.write(
        '\t\t\t' + 'Relative number of constraints: %s\n' %
        (number_of_constraints / float(the_nominal_no_of_constraints)))
    the_file_id.write('\t\t\t' + 'Setup time: %s\n' %
                      the_robust_model_solution['setuptime'])
    the_file_id.write('\t\t\t' + 'Relative setup time: %s\n' %
                      (the_robust_model_solution['setuptime'] /
                       float(the_nominal_model_solve_time)))
    the_file_id.write('\t\t\t' +
                      'Solve time: %s\n' % the_robust_model_solve_time)
    the_file_id.write(
        '\t\t\t' + 'Relative solve time: %s\n' %
        (the_robust_model_solve_time / float(the_nominal_model_solve_time)))
    the_file_id.write('\t\t\t' + 'Number of linear sections: %s\n' %
                      the_robust_model_solution['numoflinearsections'])
    the_file_id.write('\t\t\t' + 'Upper lower relative error: %s\n' %
                      mag(the_robust_model_solution['upperLowerRelError']))
Esempio n. 38
0
 def create_jsobj(self, data):
     "Create and display the javascript object for this chart"
     labels = ", ".join(['"%s"' % vn for vn in self.varnames])
     datarray = ", ".join(
         [str(mag(data[varname])) for varname in self.varnames])
     js_init = Template("""
     var data = {
         labels: [$labels],
         datasets: [
             {
                 data: [$datarray],
                 fillColor: "rgba(151,187,205,0.5)",
                 strokeColor: "rgba(151,187,205,0.8)",
                 highlightFill: "rgba(151,187,205,0.75)",
                 highlightStroke: "rgba(151,187,205,1)",
             }]}
     var ctx = document.getElementById("$name").getContext("2d");
     window.$name = new Chart(ctx).Bar(data,
                                       {animationSteps: 1}
                                       );
     """).substitute(name=self.name, labels=labels, datarray=datarray)
     display(Javascript(js_init))
Esempio n. 39
0
 def create_jsobj(self, data):
     "Create and display the javascript object for this chart"
     labels = ", ".join(['"%s"' % vn for vn in self.varnames])
     datarray = ", ".join([str(mag(data[varname]))
                           for varname in self.varnames])
     js_init = Template("""
     var data = {
         labels: [$labels],
         datasets: [
             {
                 data: [$datarray],
                 fillColor: "rgba(151,187,205,0.5)",
                 strokeColor: "rgba(151,187,205,0.8)",
                 highlightFill: "rgba(151,187,205,0.75)",
                 highlightStroke: "rgba(151,187,205,1)",
             }]}
     var ctx = document.getElementById("$name").getContext("2d");
     window.$name = new Chart(ctx).Bar(data,
                                       {animationSteps: 1}
                                       );
     """).substitute(name=self.name, labels=labels, datarray=datarray)
     display(Javascript(js_init))
Esempio n. 40
0
def gen_D8_D8_no_BLI_plots(solD8, solno_BLI):
    """
    function to generate plots of interesting values
    """

    #generate an altitude profile plot
    rngD8 = []
    altD8 = []
    for i in range(len(solD8('R_{climb}'))):
        rngD8.append(mag(solD8('R_{climb}')[i][0]))
    for i in range(len(solD8('Rng'))):
        rngD8.append(mag(solD8('Rng')[i][0]))
    for i in range(len(solD8('hft')['hft_Mission/FlightState/Altitude'])):
        altD8.append(
            mag(solD8('hft')['hft_Mission/FlightState/Altitude'][i][0]))
    rngD8 = np.cumsum(rngD8)

    rngno_BLI = []
    altno_BLI = []
    for i in range(len(solno_BLI('R_{climb}'))):
        rngno_BLI.append(mag(solno_BLI('R_{climb}')[i][0]))
    for i in range(len(solno_BLI('Rng'))):
        rngno_BLI.append(mag(solno_BLI('Rng')[i][0]))
    for i in range(len(solno_BLI('hft')['hft_Mission/FlightState/Altitude'])):
        altno_BLI.append(
            mag(solno_BLI('hft')['hft_Mission/FlightState/Altitude'][i][0]))
    rngno_BLI = np.cumsum(rngno_BLI)

    plt.plot(rngD8, altD8)
    plt.plot(rngno_BLI, altno_BLI)
    plt.legend(['D8', 'D8 w/out BLI (rear podded engines)'], loc=4)
    plt.ylabel('Altitude [ft]', fontsize=18)
    plt.xlabel('Down Range Distance [nm]', fontsize=18)
    plt.title('D8 Altitude Profile with and without BLI')
    plt.savefig('D8_D8_no_BLI_altitude_profile.pdf', bbox_inches="tight")
    plt.show()
Esempio n. 41
0
m1 = Model(A**2, [A >= l**2 + units.m**2])
tol1 = 1e-3
bst1 = autosweep_1d(m1, tol1, l, [1, 10], verbosity=0)
print "Solved after %2i passes, cost logtol +/-%.3g" % (bst1.nsols, bst1.tol)
# autosweep solution accessing
l_vals = np.linspace(1, 10, 10)
sol1 = bst1.sample_at(l_vals)
print "values of l:", l_vals
print "values of A:", sol1("A")
cost_estimate = sol1["cost"]
cost_lb, cost_ub = sol1.cost_lb(), sol1.cost_ub()
print "cost lower bound:", cost_lb
print "cost estimate:   ", cost_estimate
print "cost upper bound:", cost_ub
# you can evaluate arbitrary posynomials
np.testing.assert_allclose(mag(2*sol1(A)), mag(sol1(2*A)))
assert (sol1["cost"] == sol1(A**2)).all()
# the cost estimate is the logspace mean of its upper and lower bounds
np.testing.assert_allclose((np.log(mag(cost_lb)) + np.log(mag(cost_ub)))/2,
                           np.log(mag(cost_estimate)))
# save autosweep to a file and retrieve it
bst1.save("autosweep.pkl")
bst1_loaded = pickle.load(open("autosweep.pkl"))

# this problem is two intersecting lines in logspace
m2 = Model(A**2, [A >= (l/3)**2, A >= (l/3)**0.5 * units.m**1.5])
tol2 = {"mosek": 1e-12, "cvxopt": 1e-7,
        "mosek_cli": 1e-6}[gpkit.settings["default_solver"]]
bst2 = autosweep_1d(m2, tol2, l, [1, 10], verbosity=0)
print "Solved after %2i passes, cost logtol +/-%.3g" % (bst2.nsols, bst2.tol)
print "Table of solutions used in the autosweep:"
Esempio n. 42
0
File: beam.py Progetto: hoburg/gpkit
        theta_eq[0] = (th[0] >= th_base)  # base boundary condition
        displ_eq = (w >= w.left + 0.5*dx*(th + th.left))
        displ_eq[0] = (w[0] >= w_base)
        # minimize tip displacement (the last w)
        self.cost = self.w_tip = w[-1]
        return [shear_eq, moment_eq, theta_eq, displ_eq,
                L == (N-1)*dx]


b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(6)})
sol = b.solve(verbosity=0)
print sol.summary(maxcolumns=6)
w_gp = sol("w")  # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*ureg.m  # position along beam
q = q[0]  # assume uniform loading for the check below
w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2)  # analytic soln

assert max(abs(w_gp - w_exact)) <= 1.1*ureg.cm

PLOT = False
if PLOT:
    import matplotlib.pyplot as plt
    x_exact = np.linspace(0, L, 1000)
    w_exact = q/(24.*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
    plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',
             markersize=8)
    plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
    plt.xlabel('x [m]')
    plt.ylabel('Deflection [m]')
Esempio n. 43
0
def assert_logtol(first, second, logtol=1e-6):
    "Asserts that the logs of two arrays have a given abstol"
    np.testing.assert_allclose(log(mag(first)), log(mag(second)),
                               atol=logtol, rtol=0)