Esempio n. 1
0
def test_np_matrix():
    # Confirm that input validation code does not return np.matrix
    X = np.arange(12).reshape(3, 4)

    assert_false(isinstance(as_float_array(X), np.matrix))
    assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
    assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
def test_np_matrix():
    # Confirm that input validation code does not return np.matrix
    X = np.arange(12).reshape(3, 4)

    assert_false(isinstance(as_float_array(X), np.matrix))
    assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
    assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
Esempio n. 3
0
def test_as_float_array():
    # Test function for as_float_array
    X = np.ones((3, 10), dtype=np.int32)
    X = X + np.arange(10, dtype=np.int32)
    # Checks that the return type is ok
    X2 = as_float_array(X, copy=False)
    np.testing.assert_equal(X2.dtype, np.float32)
    # Another test
    X = X.astype(np.int64)
    X2 = as_float_array(X, copy=True)
    # Checking that the array wasn't overwritten
    assert_true(as_float_array(X, False) is not X)
    # Checking that the new type is ok
    np.testing.assert_equal(X2.dtype, np.float64)
    # Here, X is of the right type, it shouldn't be modified
    X = np.ones((3, 2), dtype=np.float32)
    assert_true(as_float_array(X, copy=False) is X)
    # Test that if X is fortran ordered it stays
    X = np.asfortranarray(X)
    assert_true(np.isfortran(as_float_array(X, copy=True)))

    # Test the copy parameter with some matrices
    matrices = [
        np.matrix(np.arange(5)),
        sp.csc_matrix(np.arange(5)).toarray(),
        sparse_random_matrix(10, 10, density=0.10).toarray(),
    ]
    for M in matrices:
        N = as_float_array(M, copy=True)
        N[0, 0] = np.nan
        assert_false(np.isnan(M).any())
def test_as_float_array():
    # Test function for as_float_array
    X = np.ones((3, 10), dtype=np.int32)
    X = X + np.arange(10, dtype=np.int32)
    # Checks that the return type is ok
    X2 = as_float_array(X, copy=False)
    np.testing.assert_equal(X2.dtype, np.float32)
    # Another test
    X = X.astype(np.int64)
    X2 = as_float_array(X, copy=True)
    # Checking that the array wasn't overwritten
    assert_true(as_float_array(X, False) is not X)
    # Checking that the new type is ok
    np.testing.assert_equal(X2.dtype, np.float64)
    # Here, X is of the right type, it shouldn't be modified
    X = np.ones((3, 2), dtype=np.float32)
    assert_true(as_float_array(X, copy=False) is X)
    # Test that if X is fortran ordered it stays
    X = np.asfortranarray(X)
    assert_true(np.isfortran(as_float_array(X, copy=True)))

    # Test the copy parameter with some matrices
    matrices = [
        np.matrix(np.arange(5)),
        sp.csc_matrix(np.arange(5)).toarray(),
        sparse_random_matrix(10, 10, density=0.10).toarray()
    ]
    for M in matrices:
        N = as_float_array(M, copy=True)
        N[0, 0] = np.nan
        assert_false(np.isnan(M).any())
Esempio n. 5
0
def test_memmap():
    # Confirm that input validation code doesn't copy memory mapped arrays

    asflt = lambda x: as_float_array(x, copy=False)

    with NamedTemporaryFile(prefix="sklearn-test") as tmp:
        M = np.memmap(tmp, shape=100, dtype=np.float32)
        M[:] = 0

        for f in (check_array, np.asarray, asflt):
            X = f(M)
            X[:] = 1
            assert_array_equal(X.ravel(), M)
            X[:] = 0
def test_memmap():
    # Confirm that input validation code doesn't copy memory mapped arrays

    asflt = lambda x: as_float_array(x, copy=False)

    with NamedTemporaryFile(prefix='sklearn-test') as tmp:
        M = np.memmap(tmp, shape=100, dtype=np.float32)
        M[:] = 0

        for f in (check_array, np.asarray, asflt):
            X = f(M)
            X[:] = 1
            assert_array_equal(X.ravel(), M)
            X[:] = 0