def train_gpmcc_chain(num_points=100, num_states=1, num_transitions = 100, save_out=True): data = simulate_chain(num_points, rng = np.random.RandomState(0)) start_time = time.time() engine = Engine(data, ['normal','normal','normal'], num_states=num_states, initialize=1) engine.transition(N=num_transitions, do_progress=True, do_plot=False) train_time = time.time() - start_time engine.num_points = num_points engine.num_transitions = num_transitions engine.data = data if save_out: file_engine = file('resources/eng_chain_pnts%d_stats%d_trans%d.pkl' % (num_points, num_states, num_transitions),'wb') file_data_time =file('resources/data_time_chain_pnts%d_stats%d_trans%d.pkl' % (num_points, num_states, num_transitions),'wb') engine.to_pickle(file_engine) pickle.dump([data, train_time],file_data_time) return engine, data, train_time
def load_gpmcc_chain(num_points=100, num_states=1, num_transitions = 100): file_engine = file('resources/eng_chain_pnts%d_stats%d_trans%d.pkl' % (num_points, num_states, num_transitions),'rb') file_data_time =file('resources/data_time_chain_pnts%d_stats%d_trans%d.pkl' % (num_points, num_states, num_transitions),'rb') engine = Engine.from_pickle(file_engine) data, train_time = pickle.load(file_data_time) return engine, data, train_time