Esempio n. 1
0
    def test_broadcast_rhs(self):
        i = torch.tensor([[0, 1, 1, 0, 1, 1], [2, 0, 2, 2, 0, 2]], dtype=torch.long)
        v = torch.tensor([3, 4, 5, 6, 7, 8], dtype=torch.float)
        sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 3]))
        dense = torch.randn(4, 2, 3, 4, requires_grad=True)
        dense_copy = dense.clone().detach().requires_grad_(True)

        res = gpytorch.dsmm(sparse, dense)
        actual = torch.matmul(sparse.to_dense(), dense_copy)
        self.assertLess(torch.norm(res - actual), 1e-5)

        grad_output = torch.randn(4, 2, 2, 4)
        res.backward(grad_output)
        actual.backward(grad_output)
        self.assertLess(torch.norm(dense.grad - dense_copy.grad).item(), 1e-5)

        i = torch.tensor([[0, 0, 0, 1, 1, 1], [0, 1, 1, 0, 1, 1], [2, 0, 2, 2, 0, 2]], dtype=torch.long)
        v = torch.tensor([3, 4, 5, 6, 7, 8], dtype=torch.float)
        sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 2, 3]))
        dense = torch.randn(4, 2, 3, 4, requires_grad=True)
        dense_copy = dense.clone().detach().requires_grad_(True)

        res = gpytorch.dsmm(sparse, dense)
        actual = torch.matmul(sparse.to_dense(), dense_copy)
        self.assertLess(torch.norm(res - actual), 1e-5)

        grad_output = torch.randn(4, 2, 2, 4)
        res.backward(grad_output)
        actual.backward(grad_output)
        self.assertLess(torch.norm(dense.grad - dense_copy.grad).item(), 1e-5)
    def evaluate(self):
        """
        Explicitly evaluate and return the Toeplitz matrix this object wraps as a float Tensor.
        To do this, we explicitly compute W_{left}TW_{right}^{T} and return it.

        Warning: as implicitly stored by this LazyVariable, W is very sparse and T requires O(n)
        storage, where as the full matrix requires O(n^2) storage. Calling evaluate can very easily
        lead to memory issues. As a result, using it should be a last resort.
        """

        if self.J_left is not None:
            n_left = len(self.J_left)
            n_right = len(self.J_right)
            W_left = toeplitz.index_coef_to_sparse(self.J_left, self.C_left,
                                                   len(self.c))
            W_right = toeplitz.index_coef_to_sparse(self.J_right, self.C_right,
                                                    len(self.c))
            if n_left <= n_right:
                W_left_T = self.explicit_interpolate_T(self.J_left,
                                                       self.C_left)
                WTW = gpytorch.dsmm(Variable(W_right), W_left_T.t()).t()
            else:
                W_right_T = self.explicit_interpolate_T(
                    self.J_right, self.C_right)
                WTW = gpytorch.dsmm(Variable(W_left), W_right_T.t())
        else:
            WTW = ToeplitzLazyVariable(self.c).mm(
                Variable(torch.eye(len(self.c))))

        if self.added_diag is not None:
            WTW = WTW + torch.diag(self.added_diag)

        return WTW
 def variational_posterior_covar(self, induc_test_covar,
                                 chol_variational_covar, test_test_covar,
                                 induc_induc_covar):
     covar_right = gpytorch.dsmm(self.interp_left,
                                 chol_variational_covar.t()).t()
     covar_left = gpytorch.dsmm(self.interp_left,
                                chol_variational_covar.t())
     return covar_left.matmul(covar_right)
    def variational_samples(self, output, n_samples=None):
        if n_samples is None:
            n_samples = gpytorch.functions.num_trace_samples

        # Draw samplse from variational distribution
        base_samples = Variable(
            self.variational_mean.data.new(self.variational_mean.size(-1),
                                           n_samples).normal_())
        if self.variational_mean.ndimension() > 1:
            # Batch mode
            base_samples = base_samples.unsqueeze(0)
        samples = self.chol_variational_covar.transpose(
            -1, -2).matmul(base_samples)
        samples = samples + self.variational_mean.unsqueeze(-1)

        # Hacky code for now for KroneckerProductLazyVariable. Let's change it soon.
        if isinstance(output.covar(), KroneckerProductLazyVariable):
            interp_matrix = output.covar().representation()[1]
            samples = gpytorch.dsmm(interp_matrix, samples)
            return samples

        if not isinstance(output.covar(), InterpolatedLazyVariable):
            raise RuntimeError(
                'Output should be an interpolated lazy variable')

        # Left multiply samples by interpolation matrix
        interp_indices = output.covar().left_interp_indices
        interp_values = output.covar().left_interp_values

        samples = left_interp(interp_indices, interp_values, samples)
        if isinstance(output.covar(), SumInterpolatedLazyVariable):
            samples = samples.sum(0)

        return samples
Esempio n. 5
0
    def matmul(self, tensor):
        # We're using a custom matmul here, because it is significantly faster than
        # what we get from the function factory.
        # The _matmul_closure is optimized for repeated calls, such as for inv_matmul

        if tensor.ndimension() == 1:
            is_vector = True
            tensor = tensor.unsqueeze(-1)
        else:
            is_vector = False

        # right_interp^T * tensor
        right_interp_t = _make_sparse_from_indices_and_values(
            self.right_interp_indices, self.right_interp_values,
            self.base_lazy_variable.size()[-1])
        right_interp_res = gpytorch.dsmm(right_interp_t, tensor)

        # base_lazy_var * right_interp^T * tensor
        base_res = self.base_lazy_variable.matmul(right_interp_res)

        # left_interp * base_lazy_var * right_interp^T * tensor
        res = left_interp(self.left_interp_indices, self.left_interp_values,
                          base_res)

        # Squeeze if necessary
        if is_vector:
            res = res.squeeze(-1)
        return res
Esempio n. 6
0
 def monte_carlo_log_likelihood(self, log_probability_func, train_y, variational_mean, chol_var_covar):
     epsilon = Variable(torch.randn(self.kronecker_product_size, gpytorch.functions.num_trace_samples))
     samples = chol_var_covar.mm(epsilon)
     samples = samples + variational_mean.unsqueeze(1).expand_as(samples)
     W_left = Variable(list_of_indices_and_values_to_sparse(self.J_lefts, self.C_lefts, self.columns))
     samples = gpytorch.dsmm(W_left, samples)
     log_likelihood = log_probability_func(samples, train_y)
     return log_likelihood
Esempio n. 7
0
 def exact_posterior_alpha(self, train_mean, train_y):
     train_residual = (train_y - train_mean).unsqueeze(1)
     gpytorch.functions.max_cg_iterations *= 10
     alpha = self.var.inv_matmul(train_residual)
     gpytorch.functions.max_cg_iterations /= 10
     alpha = gpytorch.dsmm(Variable(self.interp_right.data.t()), alpha)
     alpha = self.grid.matmul(alpha)
     return alpha.squeeze()
 def exact_posterior_alpha(self, train_mean, train_y):
     train_residual = (train_y - train_mean).unsqueeze(1)
     alpha = self.invmm(train_residual)
     W_train_right = Variable(
         index_coef_to_sparse(self.J_right, self.C_right, len(self.c)))
     alpha = gpytorch.dsmm(W_train_right.t(), alpha)
     alpha = ToeplitzLazyVariable(self.c).mm(alpha)
     return alpha.squeeze()
    def variational_posterior_covar(self, chol_variational_covar):
        """
        Assumes self is the covariance matrix between test and inducing points

        Returns the covar of the posterior GP on test points, given
        prior covars

        Args:
            - chol_variational_covar (Variable nxn) - Cholesky decomposition of variational covar
        """
        W_left = index_coef_to_sparse(self.J_left, self.C_left, len(self.c))
        W_right = W_left.t()

        covar_right = gpytorch.dsmm(W_right.t(),
                                    chol_variational_covar.t()).t()
        covar_left = gpytorch.dsmm(W_left, chol_variational_covar.t())
        return covar_left.mm(covar_right)
Esempio n. 10
0
    def test_forward(self):
        i = torch.tensor([[0, 1, 1], [2, 0, 2]], dtype=torch.long)
        v = torch.tensor([3, 4, 5], dtype=torch.float)
        sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 3]))
        dense = torch.randn(3, 3)

        res = gpytorch.dsmm(sparse, dense)
        actual = torch.mm(sparse.to_dense(), dense)
        self.assertLess(torch.norm(res - actual), 1e-5)
Esempio n. 11
0
def test_forward():
    i = torch.LongTensor([[0, 1, 1], [2, 0, 2]])
    v = torch.FloatTensor([3, 4, 5])
    sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 3]))
    dense = Variable(torch.randn(3, 3))

    res = gpytorch.dsmm(Variable(sparse), dense)
    actual = torch.mm(Variable(sparse.to_dense()), dense)
    assert (torch.norm(res.data - actual.data) < 1e-5)
Esempio n. 12
0
    def test_forward_batch(self):
        i = torch.LongTensor([[0, 0, 0, 1, 1, 1], [0, 1, 1, 0, 1, 1],
                              [2, 0, 2, 2, 0, 2]])
        v = torch.FloatTensor([3, 4, 5, 6, 7, 8])
        sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 2, 3]))
        dense = Variable(torch.randn(2, 3, 3))

        res = gpytorch.dsmm(Variable(sparse), dense)
        actual = torch.matmul(Variable(sparse.to_dense()), dense)
        self.assertLess(torch.norm(res.data - actual.data), 1e-5)
    def variational_posterior_mean(self, alpha):
        """
        Assumes self is the covariance matrix between test and inducing points

        Returns the mean of the posterior GP on test points, given
        prior means/covars

        Args:
            - alpha (Variable m) - alpha vector, computed from exact_posterior_alpha
        """
        W_left = index_coef_to_sparse(self.J_left, self.C_left, len(self.c))
        return gpytorch.dsmm(W_left, alpha.unsqueeze(1)).squeeze()
    def monte_carlo_log_likelihood(self, log_probability_func, train_y,
                                   variational_mean, chol_var_covar,
                                   num_samples):
        epsilon = Variable(torch.randn(len(self.c), num_samples))
        samples = chol_var_covar.mm(epsilon)
        samples = samples + variational_mean.unsqueeze(1).expand_as(samples)
        W_left = Variable(
            toeplitz.index_coef_to_sparse(self.J_left, self.C_left,
                                          len(self.c)))
        samples = gpytorch.dsmm(W_left, samples)
        log_likelihood = log_probability_func(samples, train_y)

        return log_likelihood
Esempio n. 15
0
def test_backward():
    i = torch.LongTensor([[0, 1, 1], [2, 0, 2]])
    v = torch.FloatTensor([3, 4, 5])
    sparse = torch.sparse.FloatTensor(i, v, torch.Size([2, 3]))
    dense = Variable(torch.randn(3, 4), requires_grad=True)
    dense_copy = Variable(dense.data.clone(), requires_grad=True)
    grad_output = torch.randn(2, 4)

    res = gpytorch.dsmm(Variable(sparse), dense)
    res.backward(grad_output)
    actual = torch.mm(Variable(sparse.to_dense()), dense_copy)
    actual.backward(grad_output)
    assert (torch.norm(dense.grad.data - dense_copy.grad.data) < 1e-5)
 def variational_posterior_mean(self, alpha):
     return gpytorch.dsmm(self.interp_left, alpha.unsqueeze(1)).squeeze()
Esempio n. 17
0
    def __call__(self, inputs, **kwargs):
        if self.exact_inference:
            if self.conditioning:
                interp_indices, interp_values = self._compute_grid(inputs)
                self.train_interp_indices = interp_indices
                self.train_interp_values = interp_values
            else:
                train_data = self.train_inputs[0].data if hasattr(
                    self, 'train_inputs') else None
                if train_data is not None and torch.equal(
                        inputs.data, train_data):
                    interp_indices = self.train_interp_indices
                    interp_values = self.train_interp_values
                else:
                    interp_indices, interp_values, = self._compute_grid(inputs)

            induc_output = gpytorch.Module.__call__(
                self, Variable(self._inducing_points))
            if not isinstance(induc_output, GaussianRandomVariable):
                raise RuntimeError('Output should be a GaussianRandomVariable')

            if isinstance(induc_output.covar(), KroneckerProductLazyVariable):
                covar = KroneckerProductLazyVariable(
                    induc_output.covar().columns, interp_indices,
                    interp_values, interp_indices, interp_values)
                interp_matrix = covar.representation()[1]
                mean = gpytorch.dsmm(
                    interp_matrix,
                    induc_output.mean().unsqueeze(-1)).squeeze(-1)

            else:
                # Compute test mean
                # Left multiply samples by interpolation matrix
                interp_indices = Variable(interp_indices)
                interp_values = Variable(interp_values)
                mean = left_interp(interp_indices, interp_values,
                                   induc_output.mean())

                # Compute test covar
                base_lv = induc_output.covar()
                covar = InterpolatedLazyVariable(base_lv, interp_indices,
                                                 interp_values, interp_indices,
                                                 interp_values)

            return GaussianRandomVariable(mean, covar)

        else:
            variational_mean = self.variational_mean
            chol_variational_covar = self.chol_variational_covar
            induc_output = gpytorch.Module.__call__(
                self, Variable(self._inducing_points))
            interp_indices, interp_values = self._compute_grid(inputs)

            # Initialize variational parameters, if necessary
            if not self.variational_params_initialized[0]:
                mean_init = induc_output.mean().data
                chol_covar_init = torch.eye(len(mean_init)).type_as(mean_init)
                variational_mean.data.copy_(mean_init)
                chol_variational_covar.data.copy_(chol_covar_init)
                self.variational_params_initialized.fill_(1)

            # Calculate alpha vector
            if self.training:
                alpha = induc_output.mean()
            else:
                if not self.has_computed_alpha[0]:
                    alpha = variational_mean.sub(induc_output.mean())
                    self.alpha.copy_(alpha.data)
                    self.has_computed_alpha.fill_(1)
                else:
                    alpha = Variable(self.alpha)

            if isinstance(induc_output.covar(), KroneckerProductLazyVariable):
                test_covar = KroneckerProductLazyVariable(
                    induc_output.covar().columns, interp_indices,
                    interp_values, interp_indices, interp_values)
                interp_matrix = test_covar.representation()[1]
                test_mean = gpytorch.dsmm(interp_matrix,
                                          alpha.unsqueeze(-1)).squeeze(-1)
                if not self.training:
                    test_chol_covar = gpytorch.dsmm(interp_matrix,
                                                    chol_variational_covar)
                    test_covar = MatmulLazyVariable(
                        test_chol_covar, test_chol_covar.transpose(-2, -1))

            else:
                # Compute test mean
                # Left multiply samples by interpolation matrix
                interp_indices = Variable(interp_indices)
                interp_values = Variable(interp_values)
                test_mean = left_interp(interp_indices, interp_values, alpha)

                # Compute test covar
                if self.training:
                    base_lv = induc_output.covar()
                else:
                    base_lv = NonLazyVariable(self.variational_covar)
                test_covar = InterpolatedLazyVariable(base_lv, interp_indices,
                                                      interp_values,
                                                      interp_indices,
                                                      interp_values)

            output = GaussianRandomVariable(test_mean, test_covar)

            # Add variational strategy
            if self.training:
                output._variational_strategy = GridInducingPointStrategy(
                    variational_mean, chol_variational_covar, induc_output)

        if not isinstance(output, GaussianRandomVariable):
            raise RuntimeError('Output should be a GaussianRandomVariable')

        return output
 def exact_posterior_mean(self, test_mean, alpha):
     alpha = alpha.unsqueeze(1)
     W_test_left = index_coef_to_sparse(self.J_left, self.C_left,
                                        len(self.c))
     return test_mean.add(gpytorch.dsmm(W_test_left, alpha).squeeze())
Esempio n. 19
0
 def exact_posterior_mean(self, test_mean, alpha):
     alpha = alpha.unsqueeze(1)
     return test_mean.add(gpytorch.dsmm(self.interp_left, alpha).squeeze())