Esempio n. 1
0
def port_average_directional_movement_index(asset_indicator, high_arr, low_arr,
                                            close_arr, n, n_ADX):
    """Calculate the port Average Directional Movement Index for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :param n_ADX: time steps to do EWM average of ADX
    :return: Average Directional Movement Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.data.to_gpu_array(),
                          low_arr.data.to_gpu_array())
    tr = port_true_range(asset_indicator.to_gpu_array(),
                         high_arr.data.to_gpu_array(),
                         low_arr.data.to_gpu_array(),
                         close_arr.data.to_gpu_array())
    ATR = PEwm(n, tr, asset_indicator).mean()
    PosDI = division(PEwm(n, UpI, asset_indicator).mean(), ATR)
    NegDI = division(PEwm(n, DoI, asset_indicator).mean(), ATR)
    NORM = division(abs_arr(substract(PosDI, NegDI)), summation(PosDI, NegDI))
    port_mask_nan(asset_indicator.data.to_gpu_array(), NORM, -1, 0)
    ADX = cudf.Series(PEwm(n_ADX, NORM, asset_indicator).mean())
    return ADX
Esempio n. 2
0
def port_trix(asset_indicator, close_arr, n):
    """Calculate the port trix.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: expoential weighted moving average in cu.Series
    """
    EX1 = PEwm(n, close_arr, asset_indicator).mean()
    EX2 = PEwm(n, EX1, asset_indicator).mean()
    EX3 = PEwm(n, EX2, asset_indicator).mean()
    return rate_of_change(cudf.Series(EX3), 2)
Esempio n. 3
0
def port_mass_index(asset_indicator, high_arr, low_arr, n1, n2):
    """Calculate the port Mass Index for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n1: n1 time steps
    :param n1: n2 time steps
    :return: Mass Index in cudf.Series
    """
    Range = high_arr - low_arr
    EX1 = PEwm(n1, Range, asset_indicator).mean()
    EX2 = PEwm(n1, EX1, asset_indicator).mean()
    Mass = division(EX1, EX2)
    MassI = Rolling(n2, Mass).sum()
    port_mask_nan(asset_indicator.data.to_gpu_array(), MassI, 0, n2 - 1)
    return cudf.Series(MassI)
Esempio n. 4
0
def port_true_strength_index(asset_indicator, close_arr, r, s):
    """Calculate port True Strength Index (TSI) for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param r: r time steps
    :param s: s time steps
    :return: True Strength Index in cudf.Series
    """
    M = diff(close_arr, 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M, 0, 1)
    aM = abs_arr(M)
    EMA1 = PEwm(r, M, asset_indicator).mean()
    aEMA1 = PEwm(r, aM, asset_indicator).mean()
    EMA2 = PEwm(s, EMA1, asset_indicator).mean()
    aEMA2 = PEwm(s, aEMA1, asset_indicator).mean()
    TSI = division(EMA2, aEMA2)
    return cudf.Series(TSI)
Esempio n. 5
0
def port_exponential_moving_average(asset_indicator, close_arr, n):
    """Calculate the exponential weighted moving average for the given data.

    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: expoential weighted moving average in cu.Series
    """
    EMA = PEwm(n, close_arr, asset_indicator).mean()
    return cudf.Series(EMA)
Esempio n. 6
0
def port_macd(asset_indicator, close_arr, n_fast, n_slow):
    """Calculate MACD, MACD Signal and MACD difference

    :param close_arr: close price of the bar, expect series from cudf
    :param n_fast: fast time steps
    :param n_slow: slow time steps
    :return: MACD MACDsign MACDdiff
    """
    EMAfast = PEwm(n_fast, close_arr, asset_indicator).mean()
    EMAslow = PEwm(n_slow, close_arr, asset_indicator).mean()
    MACD = substract(EMAfast, EMAslow)
    average_window = 9
    MACDsign = PEwm(average_window, MACD, asset_indicator).mean()
    MACDdiff = substract(MACD, MACDsign)
    out = collections.namedtuple('MACD', 'MACD MACDsign MACDdiff')
    return out(MACD=cudf.Series(MACD),
               MACDsign=cudf.Series(MACDsign),
               MACDdiff=cudf.Series(MACDdiff))
Esempio n. 7
0
def port_chaikin_oscillator(asset_indicator, high_arr, low_arr, close_arr,
                            volume_arr, n1, n2):
    """Calculate port Chaikin Oscillator for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param volume_arr: volume the bar, expect series from cudf
    :param n1: n1 time steps
    :param n2: n2 time steps
    :return: Chaikin Oscillator indicator in cudf.Series
    """
    ad = (2.0 * close_arr - high_arr - low_arr) / (high_arr -
                                                   low_arr) * volume_arr
    first = PEwm(n1, ad, asset_indicator).mean()
    second = PEwm(n2, ad, asset_indicator).mean()
    Chaikin = cudf.Series(substract(first, second))
    return Chaikin
Esempio n. 8
0
def port_relative_strength_index(asset_indicator, high_arr, low_arr, n):
    """Calculate Relative Strength Index(RSI) for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :return: Relative Strength Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.data.to_gpu_array(),
                          low_arr.data.to_gpu_array())
    UpI_s = shift(UpI, 1)
    UpI_s[0] = 0
    UpI_s = cudf.Series(UpI_s) * (1.0 - asset_indicator)
    DoI_s = shift(DoI, 1)
    DoI_s[0] = 0
    DoI_s = cudf.Series(DoI_s) * (1.0 - asset_indicator)
    PosDI = PEwm(n, UpI_s, asset_indicator).mean()
    NegDI = PEwm(n, DoI_s, asset_indicator).mean()
    RSI = division(PosDI, summation(PosDI, NegDI))
    return cudf.Series(RSI)
Esempio n. 9
0
def port_stochastic_oscillator_d(asset_indicator, high_arr, low_arr, close_arr,
                                 n):
    """Calculate port stochastic oscillator D for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: stochastic oscillator D in cudf.Series
    """
    SOk = stochastic_oscillator_k(high_arr, low_arr, close_arr)
    SOd = PEwm(n, SOk, asset_indicator).mean()
    return cudf.Series(SOd)
Esempio n. 10
0
def port_average_true_range(asset_indicator, high_arr, low_arr, close_arr, n):
    """Calculate the port Average True Range
    See https://www.investopedia.com/terms/a/atr.asp for details
    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: average true range indicator
    """
    tr = port_true_range(asset_indicator.to_gpu_array(),
                         high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                         close_arr.to_gpu_array())
    ATR = PEwm(n, tr, asset_indicator).mean()
    return cudf.Series(ATR, nan_as_null=False)
Esempio n. 11
0
def port_coppock_curve(asset_indicator, close_arr, n):
    """Calculate port Coppock Curve for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: Coppock Curve in cudf.Series
    """
    M = diff(close_arr, int(n * 11 / 10) - 1)
    N = shift(close_arr, int(n * 11 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 11 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 11 / 10) - 1)
    ROC1 = division(M, N)
    M = diff(close_arr, int(n * 14 / 10) - 1)
    N = shift(close_arr, int(n * 14 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 14 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 14 / 10) - 1)
    ROC2 = division(M, N)
    Copp = PEwm(n, summation(ROC1, ROC2), asset_indicator).mean()
    return cudf.Series(Copp, nan_as_null=False)