Esempio n. 1
0
    x = np.arange(start_year, final_year + 1)
    year_count = x.shape[0]
    plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    for i, company in enumerate(companies):
        series = np.arange(0, year_count, dtype=float)
        series = series**2 * (i + 1)
        series += np.random.rand(year_count) * noise
        ax.plot(x, series, plt_format)
    if show_legend:
        plt.legend(companies)
    plt.close()
    return fig


demo = gr.Interface(
    stock_forecast,
    [
        gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
        gr.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
        gr.Slider(minimum=1, maximum=100),
        "checkbox",
        gr.Dropdown(["cross", "line", "circle"], label="Style"),
    ],
    gr.Image(plot=True, label="forecast"),
)

if __name__ == "__main__":
    demo.launch()
Esempio n. 2
0
import gradio as gr


def sentence_builder(quantity, animal, place, activity_list, morning):
    return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""


demo = gr.Interface(
    sentence_builder,
    [
        gr.Slider(minimum=2, maximum=20),
        gr.Dropdown(["cat", "dog", "bird"]),
        gr.Radio(["park", "zoo", "road"]),
        gr.CheckboxGroup(["ran", "swam", "ate", "slept"]),
        gr.Checkbox(label="Is it the morning?"),
    ],
    "text",
    examples=[
        [2, "cat", "park", ["ran", "swam"], True],
        [4, "dog", "zoo", ["ate", "swam"], False],
        [10, "bird", "road", ["ran"], False],
        [8, "cat", "zoo", ["ate"], True],
    ],
)

if __name__ == "__main__":
    demo.launch()
Esempio n. 3
0
                          xaxis_title="Cases",
                          yaxis_title="Days Since Day 0")
        return fig
    else:
        source = ColumnDataSource(df)
        p = bk.figure(title="Outbreak in " + month,
                      x_axis_label="Cases",
                      y_axis_label="Days Since Day 0")
        for country in countries:
            p.line(x='day', y=country, line_width=2, source=source)
        item_text = json_item(p, "plotDiv")
        return item_text


inputs = [
    gr.Dropdown(["Matplotlib", "Plotly", "Bokeh"], label="Plot Type"),
    gr.Slider(minimum=1, maximum=4, default_value=3.2, label="R"),
    gr.Dropdown(["January", "February", "March", "April", "May"],
                label="Month"),
    gr.CheckboxGroup(["USA", "Canada", "Mexico", "UK"],
                     label="Countries",
                     default_selected=["USA", "Canada"]),
    gr.Checkbox(label="Social Distancing?"),
]
outputs = gr.Plot(type="auto")

demo = gr.Interface(fn=outbreak, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    demo.launch()
Esempio n. 4
0
def ct_model(diseases, img):
    time.sleep(3)
    return {disease: 0.1 for disease in diseases}


with gr.Blocks() as demo:
    gr.Markdown(
        """
# Detect Disease From Scan
With this model you can lorem ipsum
- ipsum 1
- ipsum 2
"""
    )
    disease = gr.CheckboxGroup(
        choices=["Covid", "Malaria", "Lung Cancer"], label="Disease to Scan For"
    )

    with gr.Tabs():
        with gr.TabItem("X-ray"):
            with gr.Row():
                xray_scan = gr.Image()
                xray_results = gr.JSON()
            xray_run = gr.Button("Run")
            xray_progress = gr.StatusTracker(cover_container=True)
            xray_run.click(
                xray_model,
                inputs=[disease, xray_scan],
                outputs=xray_results,
                status_tracker=xray_progress,
            )
Esempio n. 5
0
        if column not in categories
    ]
    if len(drop_columns):
        card_activity.drop(columns=drop_columns, inplace=True)
    return (
        card_activity,
        card_activity,
        {
            "fraud": activity_range / 100.0,
            "not fraud": 1 - activity_range / 100.0
        },
    )


demo = gr.Interface(
    fraud_detector,
    [
        gr.Timeseries(x="time", y=["retail", "food", "other"]),
        gr.CheckboxGroup(["retail", "food", "other"],
                         default_selected=["retail", "food", "other"]),
        gr.Slider(minimum=1, maximum=3),
    ],
    [
        "dataframe",
        gr.Timeseries(x="time", y=["retail", "food", "other"]),
        gr.Label(label="Fraud Level"),
    ],
)
if __name__ == "__main__":
    demo.launch()
Esempio n. 6
0
        ],  # Carousel
        df2,  # Timeseries
    )


demo = gr.Interface(
    fn,
    inputs=[
        gr.Textbox(default_value="Lorem ipsum", label="Textbox"),
        gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"),
        gr.Number(label="Number", default=42),
        gr.Slider(minimum=10, maximum=20, default_value=15, label="Slider: 10 - 20"),
        gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
        gr.Checkbox(label="Checkbox"),
        gr.CheckboxGroup(
            label="CheckboxGroup", choices=CHOICES, default_selected=CHOICES[0:2]
        ),
        gr.Radio(label="Radio", choices=CHOICES, default_selected=CHOICES[2]),
        gr.Dropdown(label="Dropdown", choices=CHOICES),
        gr.Image(label="Image"),
        gr.Image(label="Image w/ Cropper", tool="select"),
        gr.Image(label="Sketchpad", source="canvas"),
        gr.Image(label="Webcam", source="webcam"),
        gr.Video(label="Video"),
        gr.Audio(label="Audio"),
        gr.Audio(label="Microphone", source="microphone"),
        gr.File(label="File"),
        gr.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]),
        gr.Timeseries(x="time", y=["price", "value"]),
    ],
    outputs=[
Esempio n. 7
0
import gradio as gr

with gr.Blocks() as demo:
    txt = gr.Textbox(label="Small Textbox", lines=1)
    txt = gr.Textbox(label="Large Textbox", lines=5)
    num = gr.Number(label="Number")
    check = gr.Checkbox(label="Checkbox")
    check_g = gr.CheckboxGroup(label="Checkbox Group",
                               choices=["One", "Two", "Three"])
    radio = gr.Radio(label="Radio", choices=["One", "Two", "Three"])
    drop = gr.Dropdown(label="Dropdown", choices=["One", "Two", "Three"])
    slider = gr.Slider(label="Slider")
    audio = gr.Audio()
    video = gr.Video()
    image = gr.Image()
    ts = gr.Timeseries()
    df = gr.Dataframe()
    html = gr.HTML()
    json = gr.JSON()
    md = gr.Markdown()
    label = gr.Label()
    highlight = gr.HighlightedText()
    # layout components are static only
    # carousel doesn't work like other components
    # carousel = gr.Carousel()

if __name__ == "__main__":
    demo.launch()
Esempio n. 8
0
    if generate_report:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=15)
        pdf.cell(200, 10, txt="Disease Report", ln=1, align="C")
        pdf.cell(200, 10, txt="A Gradio Demo.", ln=2, align="C")
        pdf.output(report)
    return results, report if generate_report else None


demo = gr.Interface(
    disease_report,
    [
        "image",
        gr.CheckboxGroup([
            "Cancer", "Rash", "Heart Failure", "Stroke", "Diabetes",
            "Pneumonia"
        ]),
        "checkbox",
    ],
    [
        gr.Carousel(["text", "image"], label="Disease"),
        gr.File(label="Report"),
    ],
    title="Disease Report",
    description="Upload an Xray and select the diseases to scan for.",
    theme="grass",
    flagging_options=["good", "bad", "etc"],
    allow_flagging="auto",
)

if __name__ == "__main__":
Esempio n. 9
0
        "Fare": [fare],
        "Embarked": [embark_point + 1],
    })
    df = encode_age(df)
    df = encode_fare(df)
    pred = clf.predict_proba(df)[0]
    return {"Perishes": float(pred[0]), "Survives": float(pred[1])}


demo = gr.Interface(
    predict_survival,
    [
        gr.Dropdown(["first", "second", "third"], type="index"),
        "checkbox",
        gr.Slider(minimum=0, maximum=80),
        gr.CheckboxGroup(["Sibling", "Child"],
                         label="Travelling with (select all)"),
        gr.Number(),
        gr.Radio(["S", "C", "Q"], type="index"),
    ],
    "label",
    examples=[
        ["first", True, 30, [], 50, "S"],
        ["second", False, 40, ["Sibling", "Child"], 10, "Q"],
        ["third", True, 30, ["Child"], 20, "S"],
    ],
    interpretation="default",
    live=True,
)

if __name__ == "__main__":
    demo.launch()
Esempio n. 10
0
    x = np.arange(start_year, final_year + 1)
    year_count = x.shape[0]
    plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    for i, company in enumerate(companies):
        series = np.arange(0, year_count, dtype=float)
        series = series**2 * (i + 1)
        series += np.random.rand(year_count) * noise
        ax.plot(x, series, plt_format)
    if show_legend:
        plt.legend(companies)
    plt.close()
    return fig


demo = gr.Interface(
    plot_forecast,
    [
        gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
        gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="Company Selection"),
        gr.Slider(minimum=1, maximum=100, label="Noise Level"),
        gr.Checkbox(label="Show Legend"),
        gr.Dropdown(["cross", "line", "circle"], label="Style"),
    ],
    gr.Image(plot=True, label="forecast"),
)

if __name__ == "__main__":
    demo.launch()