def predict(self, X): X = normalize(polynomial_features(X, degree=self.degree)) return super(ElasticNet, self).predict(X)
def fit(self, X, y): X = normalize(polynomial_features(X, degree=self.degree)) super(ElasticNet, self).fit(X, y)
def predict(self, X): X = normalize(polynomial_features(X, degree=self.degree)) return super(PolynomialRidgeRegression, self).predict(X)
def fit(self, X, y): X = normalize(polynomial_features(X, degree=self.degree)) super(PolynomialRidgeRegression, self).fit(X, y)
def predict(self, X): X = polynomial_features(X, degree=self.degree) return super(PolynomialRegression, self).predict(X)
def fit(self, X, y): X = polynomial_features(X, degree=self.degree) super(PolynomialRegression, self).fit(X, y)