Esempio n. 1
0
def main():
    tic = time.perf_counter()

    gn = Granatum()

    df = gn.pandas_from_assay(gn.get_import('assay'))
    mingenes = gn.get_arg('min_genes_per_cell')
    maxgenes = gn.get_arg('max_genes_per_cell')
    mt_percent = gn.get_arg('mt_genes_percent')/100.0

    uniquegenecount = df.astype(bool).sum(axis=0)
    totalgenecount = df.sum(axis=0)
    mtrows = df[df.index.str.startswith('MT')]
    mtgenecount = mtrows.sum(axis=0)
    mtpercent = mtgenecount.div(totalgenecount)
    colsmatching = uniquegenecount.T[(uniquegenecount.T >= mingenes) & (uniquegenecount.T <= maxgenes) & (mtpercent.T <= mt_percent)].index.values
    adata = df.loc[:, colsmatching]

    num_orig_cells = uniquegenecount.T.index.size
    num_filtered_cells = len(colsmatching)

    num_lt_min = uniquegenecount.T[(uniquegenecount.T < mingenes)].index.size
    num_gt_max = uniquegenecount.T[(uniquegenecount.T > maxgenes)].index.size
    num_gt_mt = uniquegenecount.T[(mtpercent.T > mt_percent)].index.size

    gn.add_result("Number of cells is now {} out of {} original cells with {} below min genes, {} above max genes, and {} above mt percentage threshold.".format(num_filtered_cells, num_orig_cells, num_lt_min, num_gt_max, num_gt_mt), "markdown")

    plt.figure()

    plt.subplot(2, 1, 1)
    plt.title('Unique gene count distribution')
    sns.distplot(uniquegenecount, bins=int(200), color = 'darkblue', kde_kws={'linewidth': 2})
    plt.ylabel('Frequency')
    plt.xlabel('Gene count')

    plt.subplot(2, 1, 2)
    plt.title('MT Percent Distribution')
    sns.distplot(mtpercent*100.0, bins=int(200), color = 'darkblue', kde_kws={'linewidth': 2})
    plt.ylabel('Frequency')
    plt.xlabel('MT Percent')

    plt.tight_layout()

    caption = (
        'The distribution of expression levels for each cell with various metrics.'
    )
    gn.add_current_figure_to_results(caption, zoom=1, dpi=75)

    gn.export(gn.assay_from_pandas(adata), "Filtered Cells Assay", dynamic=False)

    toc = time.perf_counter()
    time_passed = round(toc - tic, 2)

    timing = "* Finished cell filtering step in {} seconds*".format(time_passed)
    gn.add_result(timing, "markdown")

    gn.commit()
def main():
    gn = Granatum()

    df = gn.pandas_from_assay(gn.get_import("assay"))

    epsilon = gn.get_arg('epsilon')
    min_cells_expressed = gn.get_arg('min_cells_expressed')

    filter_df = pd.DataFrame({'gene': df.index})
    filter_df['sum_expr'] = [sum(df.values[i, :]) for i in range(df.shape[0])]
    filter_df['avg_expr'] = filter_df['sum_expr'] / df.shape[1]
    filter_df['num_expressed_genes'] = [
        sum([x > epsilon for x in df.values[i, :]]) for i in range(df.shape[0])
    ]
    filter_df[
        'removed'] = filter_df['num_expressed_genes'] < min_cells_expressed

    new_df = df.loc[np.logical_not(filter_df['removed'].values), :]

    gn.add_result(
        "\n".join([
            "Number of genes before filtering: **{}**".format(df.shape[0]),
            "",
            "Number of genes after filtering: **{}**".format(new_df.shape[0]),
        ]),
        type="markdown",
    )

    if filter_df.shape[0] > 0:
        filter_df_deleted = filter_df.loc[filter_df['removed'].values, :].drop(
            'removed', axis=1)
        gn.add_result(
            {
                'title': f"Removed genes ({filter_df_deleted.shape[0]})",
                'orient': 'split',
                'columns': filter_df_deleted.columns.values.tolist(),
                'data': filter_df_deleted.values.tolist(),
            },
            data_type='table',
        )
    else:
        gn.add_result(
            f"No genes were removed. All {df.shape[0]} genes were kept. "
            f"See attachment **gene_selection.csv** for detail.",
            'markdown',
        )

    gn.export(filter_df.to_csv(index=False),
              'gene_selection.csv',
              kind='raw',
              meta=None,
              raw=True)
    gn.export(gn.assay_from_pandas(new_df), "Filtered Assay", dynamic=False)

    gn.commit()
Esempio n. 3
0
def main():
    tic = time.perf_counter()

    gn = Granatum()
    assay = gn.pandas_from_assay(gn.get_import('assay'))
    groups = gn.get_import('groups')
    reflabels = gn.get_import('reflabels')
    remove_cells = gn.get_arg('remove_cells')

    inv_map = {}
    for k, v in groups.items():
        inv_map[v] = inv_map.get(v, []) + [k]

    inv_map_ref = {}
    for k, v in reflabels.items():
        inv_map_ref[v] = inv_map_ref.get(v, []) + [k]

    group_relabel = {}
    mislabelled_cells = []
    for k, v in inv_map.items():
        vset = set(v)
        label_scores = {}
        for kref, vref in inv_map_ref.items():
            label_scores[kref] = len(set(vref).intersection(vset))
        group_relabel[k] = max(label_scores, key=label_scores.get)
        mislabelled_cells = mislabelled_cells + list(
            vset.difference(set(inv_map_ref[group_relabel[k]])))

    if remove_cells:
        gn.add_result(
            "Dropping {} mislabelled cells".format(len(mislabelled_cells)),
            "markdown")
        assay = assay.drop(mislabelled_cells, axis=1)
        groups = {
            key: val
            for key, val in groups.items() if not key in mislabelled_cells
        }

    for cell in groups:
        groups[cell] = group_relabel[groups[cell]]

    toc = time.perf_counter()
    time_passed = round(toc - tic, 2)

    gn.export_statically(gn.assay_from_pandas(assay), "Corresponded assay")
    gn.export_statically(groups, "Corresponded labels")

    timing = "* Finished sample coloring step in {} seconds*".format(
        time_passed)
    gn.add_result(timing, "markdown")

    gn.commit()
Esempio n. 4
0
def main():
    gn = Granatum()

    df = gn.pandas_from_assay(gn.get_import("assay"))

    frob_norm = np.linalg.norm(df.values)

    df = df / frob_norm

    gn.add_result(
        f"""\
The original assay had Frobenius norm of {frob_norm}, after normalization its
Frobenius norm is now {np.linalg.norm(df.values)}""",
        'markdown',
    )

    gn.export(gn.assay_from_pandas(df),
              "Frobenius normalized assay",
              dynamic=False)

    gn.commit()
Esempio n. 5
0
def main():
    tic = time.perf_counter()

    gn = Granatum()

    assay = gn.pandas_from_assay(gn.get_import('assay'))
    # Groups is {"cell":"cluster}
    groups = gn.get_import('groups')

    certainty = gn.get_arg('certainty')
    alpha = 1 - certainty / 100.0

    min_zscore = st.norm.ppf(gn.get_arg("certainty") / 100.0)

    min_dist = 0.1

    # Likely we want to filter genes before we get started, namely if we cannot create a good statistic
    norms_df = assay.apply(np.linalg.norm, axis=1)
    assay = assay.loc[norms_df.T >= min_dist, :]

    inv_map = {}
    inv_map_rest = {}
    for k, v in groups.items():
        inv_map[v] = inv_map.get(v, []) + [k]
        clist = inv_map_rest.get(v, list(assay.columns))
        clist.remove(k)
        inv_map_rest[v] = clist
    # Inv map is {"cluster": ["cell"]}
    print("Completed setup", flush=True)

    cols = list(inv_map.keys())

    colnames = []
    for coli in cols:
        for colj in cols:
            if coli != colj:
                colnames.append("{} vs {}".format(coli, colj))
    for coli in cols:
        colnames.append("{} vs rest".format(coli))

    # Instead of scoring into a dataframe, let's analyze each statistically
    # Dict (gene) of dict (cluster) of dict (statistics)
    # { "gene_name" : { "cluster_name" : { statistics data } }}
    # Export would be percentage more/less expressed in "on" state
    # For example gene "XIST" expresses at least 20% more in cluster 1 vs cluster 4 with 95% certainty
    total_genes = len(assay.index)
    print("Executing parallel for {} genes".format(total_genes), flush=True)

    results = Parallel(
        n_jobs=math.floor(multiprocessing.cpu_count() * 2 * 9 / 10))(
            delayed(compref)(gene, assay.loc[gene, :], colnames, inv_map,
                             inv_map_rest, alpha, min_dist, min_zscore)
            for gene in tqdm(list(assay.index)))
    result = pd.concat(results, axis=0)

    gn.export_statically(gn.assay_from_pandas(result.T),
                         'Differential expression sets')
    gn.export(result.to_csv(),
              'differential_gene_sets.csv',
              kind='raw',
              meta=None,
              raw=True)

    toc = time.perf_counter()
    time_passed = round(toc - tic, 2)

    timing = "* Finished differential expression sets step in {} seconds*".format(
        time_passed)
    gn.add_result(timing, "markdown")

    gn.commit()
Esempio n. 6
0
def main():
    gn = Granatum()

    df = gn.pandas_from_assay(gn.get_import('assay'))
    alpha = gn.get_arg('alpha')

    jammit = JAMMIT.from_dfs([df])

    res = jammit.run_for_one_alpha(
        alpha,
        verbose=1,
        convergence_threshold=0.000000001,
    )

    u = res['u']
    v = res['v']

    gn.export(dict(zip(df.index, u)), 'Genes loadings', kind='geneMeta')
    gn.export(dict(zip(df.columns, v)), 'Sample scores', kind='sampleMeta')

    gene_df = pd.DataFrame({
        'id_': df.index,
        'abs_loading': abs(u),
        'loading': u
    })
    gene_df = gene_df[['id_', 'abs_loading', 'loading']]
    gene_df = gene_df.loc[gene_df['loading'].abs() > EPSILON]
    gene_df = gene_df.sort_values('abs_loading', ascending=False)

    gn.add_result(
        {
            'title': f"Signal genes ({len(gene_df)})",
            'orient': 'split',
            'columns': gene_df.columns.values.tolist(),
            'data': gene_df.values.tolist(),
        },
        data_type='table',
    )
    gn.export(gene_df.to_csv(index=False),
              'signal_genes.csv',
              kind='raw',
              meta=None,
              raw=True)

    sample_df = pd.DataFrame({
        'id_': df.columns,
        'abs_score': abs(v),
        'score': v
    })
    sample_df = sample_df[['id_', 'abs_score', 'score']]
    sample_df = sample_df.loc[sample_df['score'].abs() > EPSILON]
    sample_df = sample_df.sort_values('abs_score', ascending=False)

    gn.add_result(
        {
            'title': f"Signal samples ({len(sample_df)})",
            'orient': 'split',
            'columns': sample_df.columns.values.tolist(),
            'data': sample_df.values.tolist(),
        },
        data_type='table',
    )
    gn.export(sample_df.to_csv(index=False),
              'signal_samples.csv',
              kind='raw',
              meta=None,
              raw=True)

    subset_df = df.loc[gene_df['id_'], sample_df['id_']]
    gn.export(gn.assay_from_pandas(subset_df),
              'Assay with only signal genes and samples',
              kind='assay')

    sns.clustermap(subset_df, cmap='RdBu')
    gn.add_current_figure_to_results(
        description='Cluster map of the signal genes and signal samples',
        zoom=2,
        width=750,
        height=850,
        dpi=50,
    )
    plt.close()

    plt.figure()
    plt.scatter(range(len(u)), u, s=2, c='red')
    plt.xlabel('index')
    plt.ylabel('value in u')
    gn.add_current_figure_to_results(
        description=
        'The *u* vector (loadings for genes) plotted as a scatter plot.',
        zoom=2,
        width=750,
        height=450,
        dpi=50,
    )
    plt.close()

    plt.figure()
    plt.plot(range(len(v)), v)
    plt.scatter(range(len(v)), v, s=6, c='red')
    plt.xlabel('index')
    plt.ylabel('value in v')
    gn.add_current_figure_to_results(
        description=
        'The *v* vector (scores for samples) plotted as a line plot.',
        zoom=2,
        width=750,
        height=450,
        dpi=50,
    )
    plt.close()

    # gn.export_current_figure(
    #     'cluster_map.pdf',
    #     zoom=2,
    #     width=750,
    #     height=850,
    #     dpi=50,
    # )

    gn.commit()
Esempio n. 7
0
def main():
    tic = time.perf_counter()

    gn = Granatum()

    assay = gn.pandas_from_assay(gn.get_import('assay'))
    groups = gn.get_import('groups')

    min_zscore = gn.get_arg('min_zscore')
    max_zscore = gn.get_arg('max_zscore')
    min_expression_variation = gn.get_arg('min_expression_variation')

    inv_map = {}
    for k, v in groups.items():
        inv_map[v] = inv_map.get(v, []) + [k]

    low_mean_dfs = []
    high_mean_dfs = []
    mean_dfs = []
    std_dfs = []
    colnames = []
    for k, v in inv_map.items():
        group_values = assay.loc[:, v]
        lowbound_clust = {}
        highbound_clust = {}
        for index, row in group_values.iterrows():
            meanbounds = sms.DescrStatsW(row).tconfint_mean()
            lowbound_clust[index] = meanbounds[0]
            highbound_clust[index] = meanbounds[1]
        low_mean_dfs.append(pd.DataFrame.from_dict(lowbound_clust, orient="index", columns=[k]))
        high_mean_dfs.append(pd.DataFrame.from_dict(highbound_clust, orient="index", columns=[k]))
        mean_dfs.append(group_values.mean(axis=1))
        std_dfs.append(group_values.std(axis=1))
        colnames.append(k)
    mean_df = pd.concat(mean_dfs, axis=1)
    mean_df.columns = colnames
    low_mean_df = pd.concat(low_mean_dfs, axis=1)
    low_mean_df.columns = colnames
    high_mean_df = pd.concat(high_mean_dfs, axis=1)
    high_mean_df.columns = colnames
    std_df = pd.concat(std_dfs, axis=1)
    std_df.columns = colnames
    print(std_df)
    minvalues = std_df.min(axis=1).to_frame()
    minvalues.columns=["min"]
    print("Minvalues>>")
    print(minvalues, flush=True)
    genes_below_min = list((minvalues[minvalues["min"]<min_expression_variation]).index)
    print("{} out of {}".format(len(genes_below_min), len(minvalues.index)), flush=True)
    mean_df = mean_df.drop(genes_below_min, axis=0)
    low_mean_df = low_mean_df.drop(genes_below_min, axis=0)
    high_mean_df = high_mean_df.drop(genes_below_min, axis=0)
    std_df = std_df.drop(genes_below_min, axis=0)
    assay = assay.drop(genes_below_min, axis=0)
    print("Filtered assay to get {} columns by {} rows".format(len(assay.columns), len(assay.index)), flush=True)

    mean_rest_dfs = []
    std_rest_dfs = []
    colnames = []
    for k, v in inv_map.items():
        rest_v = list(set(list(assay.columns)).difference(set(v)))
        mean_rest_dfs.append(assay.loc[:, rest_v].mean(axis=1))
        std_rest_dfs.append(assay.loc[:, rest_v].std(axis=1))
        colnames.append(k)
    mean_rest_df = pd.concat(mean_rest_dfs, axis=1)
    mean_rest_df.columns = colnames
    std_rest_df = pd.concat(std_rest_dfs, axis=1)
    std_rest_df.columns = colnames

    zscore_dfs = []
    cols = colnames
    colnames = []
    for coli in cols:
        for colj in cols:
            if coli != colj:
                # Here we should check significance
                # Fetch most realistic mean comparison set, what is smallest difference between two ranges
                mean_diff_overlap_low_high = (low_mean_df[coli]-high_mean_df[colj])
                mean_diff_overlap_high_low = (high_mean_df[coli]-low_mean_df[colj])
                diff_df = mean_diff_overlap_low_high.combine(mean_diff_overlap_high_low, range_check)

                zscore_dfs.append((diff_df/(std_df[colj]+std_df[coli]/4)).fillna(0).clip(-max_zscore, max_zscore))
                colnames.append("{} vs {}".format(coli, colj)) 
    for coli in cols:
        zscore_dfs.append(((mean_df[coli]-mean_rest_df[colj])/(std_rest_df[colj]+std_rest_df[coli]/4)).fillna(0).clip(-max_zscore, max_zscore))
        colnames.append("{} vs rest".format(coli)) 

    zscore_df = pd.concat(zscore_dfs, axis=1)
    zscore_df.columns = colnames
    norms_df = zscore_df.apply(np.linalg.norm, axis=1)
    colsmatching = norms_df.T[(norms_df.T >= min_zscore)].index.values
    return_df = zscore_df.T[colsmatching]
    gn.export_statically(gn.assay_from_pandas(return_df), 'Differential expression sets')
    gn.export(return_df.T.to_csv(), 'differential_gene_sets.csv', kind='raw', meta=None, raw=True)

    toc = time.perf_counter()
    time_passed = round(toc - tic, 2)

    timing = "* Finished differential expression sets step in {} seconds*".format(time_passed)
    gn.add_result(timing, "markdown")

    gn.commit()
Esempio n. 8
0
def main():
    gn = Granatum()

    tb1 = gn.pandas_from_assay(gn.get_import('assay1'))
    tb2 = gn.pandas_from_assay(gn.get_import('assay2'))
    label1 = gn.get_arg('label1')
    label2 = gn.get_arg('label2')
    direction = gn.get_arg('direction')
    normalization = gn.get_arg('normalization')

    if direction == 'samples':
        tb1 = tb1.T
        tb2 = tb2.T

    overlapped_index = set(tb1.index) & set(tb2.index)
    tb1.index = [
        f"{label1}_{x}" if x in overlapped_index else x for x in tb1.index
    ]
    tb2.index = [
        f"{label2}_{x}" if x in overlapped_index else x for x in tb2.index
    ]

    if normalization == 'none':
        tb = pd.concat([tb1, tb2], axis=0)
    elif normalization == 'frobenius':
        ntb1 = np.linalg.norm(tb1)
        ntb2 = np.linalg.norm(tb2)
        ntb = np.mean([ntb1, ntb2])
        fct1 = ntb / ntb1
        fct2 = ntb / ntb2
        tb = pd.concat([tb1 * fct1, tb2 * fct2], axis=0)
        gn.add_markdown(f"""\

Normalization info:

  - Assay **{label1}** is multiplied by {fct1}
  - Assay **{label2}** is multiplied by {fct2}
""")
    elif normalization == 'mean':
        ntb1 = np.mean(tb1)
        ntb2 = np.mean(tb2)
        ntb = np.mean([ntb1, ntb2])
        fct1 = ntb / ntb1
        fct2 = ntb / ntb2
        tb = pd.concat([tb1 * fct1, tb2 * fct2], axis=0)

        gn.add_markdown(f"""\

Normalization info:",

  - Assay **{label1}** is multiplied by {fct1}
  - Assay **{label2}** is multiplied by {fct2}
""")
    else:
        raise ValueError()

    if direction == 'samples':
        tb = tb.T

    gn.add_markdown(f"""\
You combined the following assays:

  - Assay 1 (with {tb1.shape[0]} genes and {tb1.shape[1]} cells)
  - Assay 2 (with {tb2.shape[0]} genes and {tb2.shape[1]} cells)

into:

  - Combined Assay (with {tb.shape[0]} genes and {tb.shape[1]} cells)
""")

    gn.export_statically(gn.assay_from_pandas(tb), 'Combined assay')

    if direction == 'samples':
        meta_type = 'sampleMeta'
    elif direction == 'genes':
        meta_type = 'geneMeta'
    else:
        raise ValueError()

    gn.export(
        {
            **{x: label1
               for x in tb1.index},
            **{x: label2
               for x in tb2.index}
        }, 'Assay label', meta_type)

    gn.commit()
Esempio n. 9
0
def main():
    tic = time.perf_counter()

    gn = Granatum()
    assay = gn.pandas_from_assay(gn.get_import('assay'))
    groups = gn.get_import('groups')

    inv_map = {}
    for k, v in groups.items():
        inv_map[v] = inv_map.get(v, []) + [k]

    drop_set = parse(gn.get_arg('drop_set'))
    merge_set_1 = parse(gn.get_arg('merge_set_1'))
    merge_set_2 = parse(gn.get_arg('merge_set_2'))
    merge_set_3 = parse(gn.get_arg('merge_set_3'))
    relabel_set_1 = gn.get_arg('relabel_set_1')
    relabel_set_2 = gn.get_arg('relabel_set_2')
    relabel_set_3 = gn.get_arg('relabel_set_3')

    if len(merge_set_1) > 0:
        if relabel_set_1 == "":
            relabel_set_1 = " + ".join(merge_set_1)

    if len(merge_set_2) > 0:
        if relabel_set_2 == "":
            relabel_set_2 = " + ".join(merge_set_2)

    if len(merge_set_3) > 0:
        if relabel_set_3 == "":
            relabel_set_3 = " + ".join(merge_set_3)

    try:
        for ds in drop_set:
            cells = inv_map[ds]
            gn.add_result(
                "Dropping {} cells that match {}".format(len(cells), ds),
                "markdown")
            assay = assay.drop(cells, axis=1)
            groups = {key: val for key, val in groups.items() if val != ds}
    except Exception as e:
        gn.add_result(
            "Error found in drop set, remember it should be comma separated: {}"
            .format(e), "markdown")

    try:
        if len(merge_set_1) > 0:
            merge_set_1_cells = []
            for ms1 in merge_set_1:
                merge_set_1_cells = merge_set_1_cells + inv_map[ms1]
            for cell in merge_set_1_cells:
                groups[cell] = relabel_set_1

        if len(merge_set_2) > 0:
            merge_set_2_cells = []
            for ms2 in merge_set_2:
                merge_set_2_cells = merge_set_2_cells + inv_map[ms2]
            for cell in merge_set_2_cells:
                groups[cell] = relabel_set_2

        if len(merge_set_3) > 0:
            merge_set_3_cells = []
            for ms3 in merge_set_3:
                merge_set_3_cells = merge_set_3_cells + inv_map[ms3]
            for cell in merge_set_3_cells:
                groups[cell] = relabel_set_3
    except Exception as e:
        gn.add_result(
            "Error found in merge sets, remember it should be comma separated: {}"
            .format(e), "markdown")

    toc = time.perf_counter()
    time_passed = round(toc - tic, 2)

    gn.export_statically(gn.assay_from_pandas(assay), "Label adjusted assay")
    gn.export_statically(groups, "Adjusted labels")

    timing = "* Finished sample coloring step in {} seconds*".format(
        time_passed)
    gn.add_result(timing, "markdown")

    gn.commit()