Esempio n. 1
0
    def setUp(self):
        # create a discrete network
        G = bayesnet.BNet('Water Sprinkler Bayesian Network')
        c, s, r, w = [
            G.add_v(bayesnet.BVertex(nm, True, 2)) for nm in 'c s r w'.split()
        ]
        for ep in [(c, r), (c, s), (r, w), (s, w)]:
            G.add_e(graph.DirEdge(len(G.e), *ep))
        G.InitDistributions()
        c.setDistributionParameters([0.5, 0.5])
        s.setDistributionParameters([0.5, 0.9, 0.5, 0.1])
        r.setDistributionParameters([0.8, 0.2, 0.2, 0.8])
        w.distribution[:, 0, 0] = [0.99, 0.01]
        w.distribution[:, 0, 1] = [0.1, 0.9]
        w.distribution[:, 1, 0] = [0.1, 0.9]
        w.distribution[:, 1, 1] = [0.0, 1.0]

        self.c = c
        self.s = s
        self.r = r
        self.w = w
        self.BNet = G

        # create a simple continuous network
        G2 = bayesnet.BNet('Gaussian Bayesian Network')
        a, b = [
            G2.add_v(bayesnet.BVertex(nm, False, 1)) for nm in 'a b'.split()
        ]
        for ep in [(a, b)]:
            G2.add_e(graph.DirEdge(len(G2.e), *ep))

        G2.InitDistributions()
        a.setDistributionParameters(mu=1.0, sigma=1.0)
        b.setDistributionParameters(mu=1.0, sigma=1.0, wi=2.0)

        self.a = a
        self.b = b
        self.G2 = G2
Esempio n. 2
0
 def setUp(self):
     # create a discrete network
     G = bayesnet.BNet('Water Sprinkler Bayesian Network')
     c, s, r, w = [G.add_v(bayesnet.BVertex(nm, True, 2)) for \
                   nm in 'c s r w'.split()]
     for ep in [(c, r), (c, s), (r, w), (s, w)]:
         G.add_e(graph.DirEdge(len(G.e), *ep))
     G.InitDistributions()
     c.setDistributionParameters([0.5, 0.5])
     s.setDistributionParameters([0.5, 0.9, 0.5, 0.1])
     r.setDistributionParameters([0.8, 0.2, 0.2, 0.8])
     w.distribution[:, 0, 0] = [0.99, 0.01]
     w.distribution[:, 0, 1] = [0.1, 0.9]
     w.distribution[:, 1, 0] = [0.1, 0.9]
     w.distribution[:, 1, 1] = [0.0, 1.0]
     self.c = c
     self.s = s
     self.r = r
     self.w = w
     self.BNet = G
Esempio n. 3
0
    def setUp(self):
        # create the network
        G = bayesnet.BNet('Asia Bayesian Network')

        visit, smoking, tuberculosis, bronchitis, lung, ou, Xray, dyspnoea = \
        [G.add_v(bayesnet.BVertex( nm, True, 2)) for nm in \
        'visit smoking tuberculosis bronchitis lung ou Xray dyspnoea'.split()]

        for ep in [(visit,tuberculosis), (tuberculosis, ou), (smoking,lung), \
                   (lung, ou), (ou, Xray), (smoking, bronchitis), \
                   (bronchitis, dyspnoea), (ou, dyspnoea)]:
            G.add_e(graph.DirEdge(len(G.e), *ep))
        G.InitDistributions()
        visit.setDistributionParameters([0.99, 0.01])
        tuberculosis.distribution[:, 0] = [0.99, 0.01]
        tuberculosis.distribution[:, 1] = [0.95, 0.05]
        smoking.setDistributionParameters([0.5, 0.5])
        lung.distribution[:, 0] = [0.99, 0.01]
        lung.distribution[:, 1] = [0.9, 0.1]
        ou.distribution[:, 0, 0] = [1, 0]
        ou.distribution[:, 0, 1] = [0, 1]
        ou.distribution[:, 1, 0] = [0, 1]
        ou.distribution[:, 1, 1] = [0, 1]
        Xray.distribution[:, 0] = [0.95, 0.05]
        Xray.distribution[:, 1] = [0.02, 0.98]
        bronchitis.distribution[:, 0] = [0.7, 0.3]
        bronchitis.distribution[:, 1] = [0.4, 0.6]
        dyspnoea.distribution[{'bronchitis': 0, 'ou': 0}] = [0.9, 0.1]
        dyspnoea.distribution[{'bronchitis': 1, 'ou': 0}] = [0.2, 0.8]
        dyspnoea.distribution[{'bronchitis': 0, 'ou': 1}] = [0.3, 0.7]
        dyspnoea.distribution[{'bronchitis': 1, 'ou': 1}] = [0.1, 0.9]
        self.visit = visit
        self.tuberculosis = tuberculosis
        self.smoking = smoking
        self.lung = lung
        self.ou = ou
        self.Xray = Xray
        self.bronchitis = bronchitis
        self.dyspnoea = dyspnoea
        self.BNet = G
Esempio n. 4
0
    def setUp(self):
        G = BNet('Water Sprinkler Bayesian Network')
        c, s, r, w = [G.add_v(BVertex(name, True, 2)) for name in 'c s r w'.split()]
        for ep in [(c, r), (c, s), (r, w), (s, w)]:
            G.add_e(graph.DirEdge(len(G.e), *ep))
##        G.InitCPTs()
##        c.setCPT([0.5, 0.5])
##        s.setCPT([0.5, 0.9, 0.5, 0.1])
##        r.setCPT([0.8, 0.2, 0.2, 0.8])
##        w.setCPT([1, 0.1, 0.1, 0.01, 0.0, 0.9, 0.9, 0.99])

        G.InitDistributions()

        c.setDistributionParameters([0.5, 0.5])
        s.setDistributionParameters([0.5, 0.9, 0.5, 0.1])
        r.setDistributionParameters([0.8, 0.2, 0.2, 0.8])
        w.setDistributionParameters([1, 0.1, 0.1, 0.01, 0.0, 0.9, 0.9, 0.99])

        self.c = c
        self.s = s
        self.r = r
        self.w = w
        self.BNet = G
Esempio n. 5
0
    def LearnStruct(self, cases, N, alpha, approx):
        """Greedy search for optimal structure (all the data in cases are known).
        It will go through every node of the BNet. At each node, it will delete
        every outgoing edge, or add every possible edge, or reverse every
        possible edge. It will compute the BIC score each time and keep the BNet
        with the highest score.
        """
        G_initial = self.BNet.copy()
        engine_init = SEMLearningEngine(G_initial)
        G_best = self.BNet.copy()
        prec_var_score = 0
        invert = {}
        change = {}

        for v in self.BNet.all_v:
            G = copy.deepcopy(engine_init.BNet)
            edges = copy.deepcopy(G.v[v.name].out_e)
            temp = {}
            # delete the outgoing edges
            while edges:
                edge = edges.pop(0)
                node = edge._v[
                    1]  #node is the child node, the only node for which the cpt table changes
                dim_init = G_initial.Dimension(node)
                score_init = engine_init.ScoreBIC(N, dim_init, G_initial, \
                             G_initial.v[node.name], cases, alpha, approx)
                self.ChangeStruct('del', edge)  #delete the current edge
                self.SetNewDistribution(engine_init.BNet, node, cases, approx)
                dim = self.BNet.Dimension(node)
                score = self.ScoreBIC(N, dim, self.BNet, self.BNet.v[node.name], \
                                      cases, alpha, approx)
                var_score = score - score_init
                if var_score > prec_var_score:
                    change = {}
                    invert = {}
                    change[v.name] = node.name
                    print 'deleted:', v.name, node.name, var_score
                    prec_var_score = var_score
                    G_best = self.BNet.copy()
                self.BNet = G_initial.copy()

            # Add all possible edges
            G = copy.deepcopy(engine_init.BNet)
            nodes = []
            for node in G.all_v:
                if (not (node.name in [vv.name for vv in self.BNet.v[v.name].out_v])) and \
                    (not (node.name == v.name)):
                    nodes.append(node)
            while nodes:
                node = nodes.pop(0)
                if G.e.keys():
                    edge = graph.DirEdge(max(G.e.keys()) + 1, \
                           self.BNet.v[v.name], self.BNet.v[node.name])
                else:
                    edge = graph.DirEdge(0, self.BNet.v[v.name], \
                           self.BNet.v[node.name])
                self.ChangeStruct('add', edge)
                if self.BNet.HasNoCycles(self.BNet.v[node.name]):
                    dim_init = engine_init.BNet.Dimension(node)
                    score_init = engine_init.ScoreBIC(N, dim_init, G_initial, \
                                 G_initial.v[node.name], cases, alpha, approx)
                    self.SetNewDistribution(engine_init.BNet, node, cases,
                                            approx)
                    dim = self.BNet.Dimension(node)
                    score = self.ScoreBIC(N, dim, self.BNet, \
                                          self.BNet.v[node.name], cases, \
                                          alpha, approx)
                    var_score = score - score_init
                    if var_score > prec_var_score:
                        change = {}
                        invert = {}
                        change[v.name] = node.name
                        print 'added: ', v.name, node.name, var_score
                        prec_var_score = var_score
                        G_best = self.BNet.copy()
                self.BNet = G_initial.copy()

            # Invert all possible edges
            G = copy.deepcopy(G_initial)
            edges = copy.deepcopy(G.v[v.name].out_e)
            while edges:
                edge = edges.pop(0)
                node = self.BNet.v[edge._v[1].name]  #node is the child node
                temp[v.name] = node.name
                if temp not in self.inverted:
                    dim_init1 = G_initial.Dimension(node)
                    score_init1 = engine_init.ScoreBIC(N, dim_init1, G_initial, \
                                  G_initial.v[node.name], cases, alpha, approx)
                    self.ChangeStruct('del', edge)
                    self.SetNewDistribution(engine_init.BNet, node, \
                                            cases, approx)
                    dim1 = self.BNet.Dimension(node)
                    score1 = self.ScoreBIC(N, dim1, self.BNet, \
                             self.BNet.v[node.name], cases, alpha, approx)
                    G_invert = self.BNet.copy()
                    engine_invert = SEMLearningEngine(G_invert)
                    inverted_edge = graph.DirEdge(max(G.e.keys()) + 1, \
                                    self.BNet.v[node.name], self.BNet.v[v.name])
                    self.ChangeStruct('add', inverted_edge)
                    if self.BNet.HasNoCycles(self.BNet.v[node.name]):
                        dim_init = G_initial.Dimension(v)
                        score_init = engine_init.ScoreBIC(N, dim_init, \
                                     G_initial, G_initial.v[v.name], cases, \
                                     alpha, approx)
                        self.SetNewDistribution(engine_invert.BNet, v, \
                                                cases, approx)
                        dim = self.BNet.Dimension(v)
                        score = self.ScoreBIC(N, dim, self.BNet, \
                                self.BNet.v[v.name], cases, alpha, approx)
                        var_score = score1 - score_init1 + score - score_init
                        if var_score > prec_var_score + 5:  #+ 5 is to avoid recalculation due to round errors
                            invert = {}
                            change = {}
                            invert[node.name] = v.name
                            print 'inverted:', v.name, node.name, var_score
                            prec_var_score = var_score
                            G_best = self.BNet.copy()
                    self.BNet = G_initial.copy()

        #self.BNet is the optimal graph structure
        if prec_var_score == 0:
            self.converged = True
        self.BNet = G_best.copy()
        self.inverted.append(invert)
        self.changed = []
        self.changed.append(change)
Esempio n. 6
0
        for i in range(3):
            case = cases[3 * i]
            rand = random.sample(['visit', 'smoking', 'tuberculosis', \
                   'bronchitis', 'lung', 'ou', 'Xray', 'dyspnoea'], 1)[0]
            case[rand] = '?'
        # create two new bayesian network with the same parameters as self.BNet
        G1 = bayesnet.BNet('Asia Bayesian Network2')

        visit, smoking, tuberculosis, bronchitis, lung, ou, Xray, dyspnoea = \
        [G1.add_v( bayesnet.BVertex( nm, True, 2 ) ) for nm in \
        'visit smoking tuberculosis bronchitis lung ou Xray dyspnoea'.split()]

        for ep in [(visit, tuberculosis), (tuberculosis, ou), (smoking, lung), \
                   (lung, ou), (ou, Xray), (smoking, bronchitis), \
                   (bronchitis, dyspnoea), (ou, dyspnoea)]:
            G1.add_e(graph.DirEdge(len(G1.e), *ep))
        G1.InitDistributions()
        ##        tuberculosis.distribution[:,0]=[0.99, 0.01]
        ##        tuberculosis.distribution[:,1]=[0.95, 0.05]
        ##        smoking.setDistributionParameters([0.5, 0.5])
        ##        lung.distribution[:,0]=[0.99, 0.01]
        ##        lung.distribution[:,1]=[0.9, 0.1]
        ##        ou.distribution[:,0,0]=[1, 0]
        ##        ou.distribution[:,0,1]=[0, 1]
        ##        ou.distribution[:,1,0]=[0, 1]
        ##        ou.distribution[:,1,1]=[0, 1]
        ##        Xray.distribution[:,0]=[0.946, 0.054]
        ##        Xray.distribution[:,1]=[0.0235, 0.9765]
        ##        bronchitis.distribution[:,0]=[0.7, 0.3]
        ##        bronchitis.distribution[:,1]=[0.4, 0.6]
        ##        dyspnoea.distribution[{'bronchitis':0,'ou':0}]=[0.907, 0.093]