Esempio n. 1
0
 def test_add_edge(self):
     g = ADTGraph()
     g.add_verticies([1, 2, 3])
     g.add_edge(1, 2, 3)
     g.add_edge(2, 1, 3)
     g.add_edge(3, 2, 1)
     g.add_edge(2, 3, 1)
Esempio n. 2
0
 def test_init(self):
     path = 'file_reader_test.txt'
     g = ADTGraph(path)
     self.assertCountEqual(g.vertices.keys(), ['1', '2', '3', '4', '5'])
     egde_list = [('1', '2'), ('2', '3'), ('3', '4'), ('4', '5'),
                  ('5', '1')]
     self.assertCountEqual(g.edges, egde_list)
     assert g.vertex_count == 5
     assert g.edge_count == 5
     assert g.vertices['1'].is_pointing_to('2') is True
Esempio n. 3
0
 def __init__(self,
              virus_name: str,
              population_size: int,
              vacc_percentage: float,
              mortality_rate: float,
              transmission: float,
              initial_infected=1):
     self.population_graph = ADTGraph()
     self.population_graph.digraph = False
     self.virus_name = virus_name
     self.population_size = population_size
     self.vacc_percentage = vacc_percentage
     self.mortality_rate = mortality_rate
     self.transmission = transmission
     self.initial_infected = initial_infected
     self.total_infected = initial_infected
     self.current_infected = initial_infected
     self.total_dead = 0
     self._create_population()
     self._create_population_connections()
Esempio n. 4
0
 def test_add_vertex(self):
     g = ADTGraph()
     g.add_vertex(1)
     g.add_vertex(2)
     g.add_vertex(3)
     assert g.vertex_count == 3
     assert len(g.vertices) == 3
     self.assertCountEqual(g.vertices.keys(), [1, 2, 3])
Esempio n. 5
0
class Simulation(object):
    def __init__(self,
                 virus_name: str,
                 population_size: int,
                 vacc_percentage: float,
                 mortality_rate: float,
                 transmission: float,
                 initial_infected=1):
        self.population_graph = ADTGraph()
        self.population_graph.digraph = False
        self.virus_name = virus_name
        self.population_size = population_size
        self.vacc_percentage = vacc_percentage
        self.mortality_rate = mortality_rate
        self.transmission = transmission
        self.initial_infected = initial_infected
        self.total_infected = initial_infected
        self.current_infected = initial_infected
        self.total_dead = 0
        self._create_population()
        self._create_population_connections()

    def _create_population(self):
        '''creates a population with population_size(int) people
        Will create initial_infected(int) people infected
        Will also create about vacc_percentage(float 0-1) vaccinated people'''
        for i in range(self.population_size):
            if i < self.initial_infected:
                # create an infected person
                infected_person = Person(i, False, True)
                self.population_graph.add_vertex(infected_person)
            else:  # create a healthy person
                # if random float from 0 - 1 is less than the vacc pct
                if random() < self.vacc_percentage:
                    # create a healthy vaccinated person
                    healthy_vaccinated_person = Person(i, True, False)
                    self.population_graph.add_vertex(healthy_vaccinated_person)
                else:
                    # create a healthy unvaccinated person
                    healthy_person = Person(i, False, False)
                    self.population_graph.add_vertex(healthy_person)

    def _create_population_connections(self):
        '''Create random edges between already created vertices'''
        lst_of_people = [person for person in self.population_graph]
        from math import log
        avg_connections = int(log(10 * self.population_size, 10)**2)
        for _ in range(self.population_size * avg_connections):
            random_person = choice(lst_of_people)
            other_random_person = choice(lst_of_people)
            while other_random_person == random_person:
                other_random_person = choice(lst_of_people)
            self.population_graph.add_edge(random_person, other_random_person)

    def _simulation_should_continue(self):
        '''Returns a boolean indicating whether or not to continue simulation'''
        if self.population_size == self.total_dead:
            print('Everybody died')
            return False
        elif self.current_infected == 0:
            print("The disease stopped spreading")
            return False
        else:
            return True

    def run(self):
        while self._simulation_should_continue():
            self.time_step()

    def time_step(self):
        '''Every day we have a new timestep.
        People are less likely to interact with others if they are sick.
        If a vaccinated person interacts with someone who is not vaccinated
        they can try to convince them to get vaccinated.
        If a sick person interracts with a healthy person
        '''
        pass

    def random_person(self, person):
        '''Given a person find another random person they should interact with
        It isn't exactly random though
        There is a 20% chance that person is not in their direct network
        On the 80% that they do know the person
        There is a 75% chance that person is in their first network
        On the 25% chance they are in their second network we recursively call this method
        So then there is again a 20% chance random, 60% they directly know the person and
        20% in their extended network.'''
        pass

    def interaction(self, sick_person, random_person):
        pass

    def _infect_newly_infected(self):
        pass

    def predict_danger(self, person):
        # if a person is healthy, vaccinated, or dead they are not harmful
        if not person.is_infected or person.is_vaccinated or not person.is_alive:
            return 0
        danger = 0
        network_levels = self.population_graph.find_network_levels(person)
        for level, others in network_levels.items():
            if level == 0:
                continue
            healthy_unvaccinated_friends = 0
            for person in others:
                if not person.is_infected and not person.is_vaccinated and person.is_alive:
                    healthy_unvaccinated_friends += 1
            danger += (healthy_unvaccinated_friends /
                       len(others)) * 0.2**(level - 1)
        return danger

    def find_most_dangerous(self):
        most_dangerous_person = None
        max_danger = 0
        for person in self.population_graph:
            danger = self.predict_danger(person)
            if danger > max_danger or most_dangerous_person is None:
                max_danger = danger
                most_dangerous_person = person
        print('max-danger', max_danger)
        return most_dangerous_person

    def predict_vulnerability(self, person: Person):
        # if a person is infected, vaccinated, or dead they are not vulnerable
        if person.is_infected or person.is_vaccinated or not person.is_alive:
            return 0
        vulnerability = 0
        network_levels = self.population_graph.find_network_levels(person)
        for level, others in network_levels.items():
            if level == 0:
                continue
            sick_friends = len([
                sick_person for sick_person in others
                if sick_person.is_infected
            ])
            vulnerability += (sick_friends / len(others)) * 0.2**(level - 1)
        return vulnerability

    def find_most_vulnerable(self):
        most_vulnerable_person = None
        max_vulnerability = 0
        for person in self.population_graph:
            vulnerability = self.predict_vulnerability(person)
            if vulnerability > max_vulnerability or most_vulnerable_person is None:
                max_vulnerability = vulnerability
                most_vulnerable_person = person
        print('max-vulnerability', max_vulnerability)
        return most_vulnerable_person
Esempio n. 6
0
import sys
from graph import ADTGraph

if __name__ == '__main__':
    PATH = sys.argv[1][:-4] + '_c2' + sys.argv[1][-4:]
    a = sys.argv[2]
    b = sys.argv[3]
    g = ADTGraph(PATH)
    shortest_path = g.shortest_path(a, b)
    print(f'Vertices in shortest path: {", ".join(shortest_path)}')
    print(f'Number of edges in shortest path: {len(shortest_path) - 1}')
import sys
from graph import ADTGraph

if __name__ == '__main__':
    PATH = sys.argv[1][:-4] + '_c3' + sys.argv[1][-4:]
    a = sys.argv[2]
    b = sys.argv[3]
    g = ADTGraph(PATH)
    has_path = g.recursive_dfs(a, b)
    # shortest_weighted_path = g.dijkstras(a, b)
    print(
        f'There exists a path between vertex {a} and {b}: {"TRUE" if has_path else "FALSE"}'
    )
    # print(
    #     f'The weight of the minimum weight path between vertex {a} and {b} is: {shortest_weighted_path}')
Esempio n. 8
0
import sys
from graph import ADTGraph

if __name__ == '__main__':
    PATH = sys.argv[1][:-4] + '_c1' + sys.argv[1][-4:]
    g = ADTGraph(PATH)
    print(f'Verticies: {g.vertex_count}')
    print(f'Edges: {g.edge_count}')
    print('Edge List:')
    for edge in g.edges:
        print(edge)