# Own graphical library from graph_lib import gl # Import functions independent of DataStructure import utilities_lib as ul # For statistics. Requires statsmodels 5.0 or more # Analysis of Variance (ANOVA) on linear models import basicMathlib as bMA import DDBB_lib as DBl import CEM as CEM import CDistribution as Cdist import specific_plotting_func as spf gl.close("all") ############################################## ########## FLAGS ############################ trading_graph = 0 remove_gap_return = 1 preprocess_data = 1 perform_EM = 1 perform_HMM_after_EM = 0 final_clusters_graph = 1 responsibility_graph = 1
def generate_images_iterations_ll(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list,folder_images_gif): # os.remove(folder_images_gif) # Remove previous images if existing """ WARNING: MEANT FOR ONLY 3 Distributions due to the color RGB """ import shutil ul.create_folder_if_needed(folder_images_gif) shutil.rmtree(folder_images_gif) ul.create_folder_if_needed(folder_images_gif) ######## Plot the original data ##### Xdata = np.concatenate(Xs,axis = 1).T colors = ["r","b","g"] K_G,K_W,K_vMF = Ks ### FOR EACH ITERATION for i in range(len(theta_list)): # theta_list indx = i gl.init_figure() ax1 = gl.subplot2grid((1,2), (0,0), rowspan=1, colspan=1) ## Get the relative ll of the Gaussian denoising cluster. ll = myDManager.pdf_log_K(Xdata,theta_list[indx]) N,K = ll.shape # print ll.shape for j in range(N): # For every sample #TODO: Can this not be done without a for ? # Normalize the probability of the sample being generated by the clusters Marginal_xi_probability = gf.sum_logs(ll[j,:]) ll[j,:] = ll[j,:]- Marginal_xi_probability ax1 = gl.scatter(Xdata[j,0],Xdata[j,1], labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"], color = (np.exp(ll[j,1]), np.exp(ll[j,0]), np.exp(ll[j,2])) , ### np.exp(ll[j,2]) alpha = 1, nf = 0) # Only doable if the clusters dont die for k_c in myDManager.clusterk_to_Dname.keys(): k = myDManager.clusterk_to_thetak[k_c] distribution_name = myDManager.clusterk_to_Dname[k_c] # G W if (distribution_name == "Gaussian"): ## Plot the ecolution of the mu #### Plot the Covariance of the clusters ! mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477) r_ellipse = bMA.get_ellipse_points(mean,w,h,theta) gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3, AxesStyle = "Normal2", legend = ["Kg(%i). pi:%0.2f"%(k, float(model_theta_list[indx][0][0,k]))]) elif(distribution_name == "Watson"): #### Plot the pdf of the distributino ! ## Distribution parameters for Watson kappa = float(theta_list[indx][k][1]); mu = theta_list[-1][k][0] Nsa = 1000 # Draw 2D samples as transformation of the angle Xalpha = np.linspace(0, 2*np.pi, Nsa) Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)]) probs = [] # Vector with probabilities for i in range(Nsa): probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) )) probs = np.array(probs) # Plot it in polar coordinates X1_w = (1 + probs) * np.cos(Xalpha) X2_w = (1 + probs) * np.sin(Xalpha) gl.plot(X1_w,X2_w, alpha = 1, lw = 3, ls = "-.", legend = ["Kw(%i). pi:%0.2f"%(k, float(model_theta_list[indx][0][0,k]))]) elif(distribution_name == "vonMisesFisher"): #### Plot the pdf of the distributino ! ## Distribution parameters for Watson kappa = float(theta_list[indx][k][1]); mu = theta_list[indx][k][0] Nsa = 1000 # Draw 2D samples as transformation of the angle Xalpha = np.linspace(0, 2*np.pi, Nsa) Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)]) probs = [] # Vector with probabilities for i in range(Nsa): probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) )) probs = np.array(probs) probs = probs.reshape((probs.size,1)).T # Plot it in polar coordinates X1_w = (1 + probs) * np.cos(Xalpha) X2_w = (1 + probs) * np.sin(Xalpha) # print X1_w.shape, X2_w.shape gl.plot(X1_w,X2_w, alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k, float(model_theta_list[indx][0][0,k]))]) gl.set_zoom(xlim = [-6,6], ylim = [-6,6], ax = ax1) ax2 = gl.subplot2grid((1,2), (0,1), rowspan=1, colspan=1) if (indx == 0): gl.add_text(positionXY = [0.1,.5], text = r' Initilization Incomplete LogLike: %.2f'%(logl[0]),fontsize = 15) pass elif (indx >= 1): gl.plot(range(1,np.array(logl).flatten()[1:].size +1),np.array(logl).flatten()[1:(indx+1)], ax = ax2, legend = ["Iteration %i, Incom LL: %.2f"%(indx, logl[indx])], labels = ["Convergence of LL with generated data","Iterations","LL"], lw = 2) gl.scatter(1, logl[1], lw = 2) pt = 0.05 gl.set_zoom(xlim = [0,len(logl)], ylim = [logl[1] - (logl[-1]-logl[1])*pt,logl[-1] + (logl[-1]-logl[1])*pt], ax = ax2) gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01) gl.savefig(folder_images_gif +'gif_'+ str(indx) + '.png', dpi = 100, sizeInches = [16, 8], close = "yes",bbox_inches = None) gl.close("all")
from graph_lib import gl import numpy as np X = np.array(range(0, 100)) Y = np.sin(1.5 * (2 * np.pi / X.size) * X) X2 = np.array(range(0, 50)) Y2 = (-15 + np.array(range(0, 50))) / 25.0 gl.close("all") type_graph = 2 folder_images = "../pics/gl/" dpi = 100 sizeInches = [2 * 8, 2 * 3] # Subplot Type 1 if (type_graph == 1): gl.set_subplots(nr=1, nc=2) gl.plot(X, Y, nf=1, color="k", lw=5, alpha=0.7, labels=["Sine chart", "Time (s)", "Voltage(V)"], legend=["Rolling measurement"]) gl.stem(X2, Y2, nf=1,
def generate_images_iterations_ll(Xs, mus, covs, Ks, myDManager, logl, theta_list, model_theta_list, folder_images_gif): # os.remove(folder_images_gif) # Remove previous images if existing """ WARNING: MEANT FOR ONLY 3 Distributions due to the color RGB """ import shutil ul.create_folder_if_needed(folder_images_gif) shutil.rmtree(folder_images_gif) ul.create_folder_if_needed(folder_images_gif) ######## Plot the original data ##### Xdata = np.concatenate(Xs, axis=1).T colors = ["r", "b", "g"] K_G, K_W, K_vMF = Ks ### FOR EACH ITERATION for i in range(len(theta_list)): # theta_list indx = i gl.init_figure() ax1 = gl.subplot2grid((1, 2), (0, 0), rowspan=1, colspan=1) ## Get the relative ll of the Gaussian denoising cluster. ll = myDManager.pdf_log_K(Xdata, theta_list[indx]) N, K = ll.shape # print ll.shape for j in range(N): # For every sample #TODO: Can this not be done without a for ? # Normalize the probability of the sample being generated by the clusters Marginal_xi_probability = gf.sum_logs(ll[j, :]) ll[j, :] = ll[j, :] - Marginal_xi_probability ax1 = gl.scatter( Xdata[j, 0], Xdata[j, 1], labels=[ 'EM Evolution. Kg:' + str(K_G) + ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1", "X2" ], color=(np.exp(ll[j, 1]), np.exp(ll[j, 0]), np.exp(ll[j, 2])), ### np.exp(ll[j,2]) alpha=1, nf=0) # Only doable if the clusters dont die for k_c in myDManager.clusterk_to_Dname.keys(): k = myDManager.clusterk_to_thetak[k_c] distribution_name = myDManager.clusterk_to_Dname[k_c] # G W if (distribution_name == "Gaussian"): ## Plot the ecolution of the mu #### Plot the Covariance of the clusters ! mean, w, h, theta = bMA.get_gaussian_ellipse_params( mu=theta_list[indx][k][0], Sigma=theta_list[indx][k][1], Chi2val=2.4477) r_ellipse = bMA.get_ellipse_points(mean, w, h, theta) gl.plot(r_ellipse[:, 0], r_ellipse[:, 1], ax=ax1, ls="-.", lw=3, AxesStyle="Normal2", legend=[ "Kg(%i). pi:%0.2f" % (k, float(model_theta_list[indx][0][0, k])) ]) elif (distribution_name == "Watson"): #### Plot the pdf of the distributino ! ## Distribution parameters for Watson kappa = float(theta_list[indx][k][1]) mu = theta_list[-1][k][0] Nsa = 1000 # Draw 2D samples as transformation of the angle Xalpha = np.linspace(0, 2 * np.pi, Nsa) Xgrid = np.array([np.cos(Xalpha), np.sin(Xalpha)]) probs = [] # Vector with probabilities for i in range(Nsa): probs.append( np.exp(Wad.Watson_pdf_log(Xgrid[:, i], [mu, kappa]))) probs = np.array(probs) # Plot it in polar coordinates X1_w = (1 + probs) * np.cos(Xalpha) X2_w = (1 + probs) * np.sin(Xalpha) gl.plot(X1_w, X2_w, alpha=1, lw=3, ls="-.", legend=[ "Kw(%i). pi:%0.2f" % (k, float(model_theta_list[indx][0][0, k])) ]) elif (distribution_name == "vonMisesFisher"): #### Plot the pdf of the distributino ! ## Distribution parameters for Watson kappa = float(theta_list[indx][k][1]) mu = theta_list[indx][k][0] Nsa = 1000 # Draw 2D samples as transformation of the angle Xalpha = np.linspace(0, 2 * np.pi, Nsa) Xgrid = np.array([np.cos(Xalpha), np.sin(Xalpha)]) probs = [] # Vector with probabilities for i in range(Nsa): probs.append( np.exp( vMFd.vonMisesFisher_pdf_log( Xgrid[:, i], [mu, kappa]))) probs = np.array(probs) probs = probs.reshape((probs.size, 1)).T # Plot it in polar coordinates X1_w = (1 + probs) * np.cos(Xalpha) X2_w = (1 + probs) * np.sin(Xalpha) # print X1_w.shape, X2_w.shape gl.plot(X1_w, X2_w, alpha=1, lw=3, ls="-.", legend=[ "Kvmf(%i). pi:%0.2f" % (k, float(model_theta_list[indx][0][0, k])) ]) gl.set_zoom(xlim=[-6, 6], ylim=[-6, 6], ax=ax1) ax2 = gl.subplot2grid((1, 2), (0, 1), rowspan=1, colspan=1) if (indx == 0): gl.add_text(positionXY=[0.1, .5], text=r' Initilization Incomplete LogLike: %.2f' % (logl[0]), fontsize=15) pass elif (indx >= 1): gl.plot( range(1, np.array(logl).flatten()[1:].size + 1), np.array(logl).flatten()[1:(indx + 1)], ax=ax2, legend=["Iteration %i, Incom LL: %.2f" % (indx, logl[indx])], labels=[ "Convergence of LL with generated data", "Iterations", "LL" ], lw=2) gl.scatter(1, logl[1], lw=2) pt = 0.05 gl.set_zoom(xlim=[0, len(logl)], ylim=[ logl[1] - (logl[-1] - logl[1]) * pt, logl[-1] + (logl[-1] - logl[1]) * pt ], ax=ax2) gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01) gl.savefig(folder_images_gif + 'gif_' + str(indx) + '.png', dpi=100, sizeInches=[16, 8], close="yes", bbox_inches=None) gl.close("all")