Esempio n. 1
0
 def _makekernel(self, **kwargs):
     self.kernel = MarginalizedGraphKernel(
         TensorProduct(element=KroneckerDelta(self.element_prior)),
         TensorProduct(length=SquareExponential(self.edge_length_scale)),
         q=self.stopping_probability,
         p=self.starting_probability,
         **kwargs)
Esempio n. 2
0
def test_mlgk_on_permuted_graph():
    g = Graph.from_ase(molecule('C6H6'))
    for _ in range(10):
        h = g.permute(np.random.permutation(len(g.nodes)))
        kernel = MarginalizedGraphKernel(
            TensorProduct(element=KroneckerDelta(0.5)),
            TensorProduct(length=SquareExponential(0.1)))
        assert (kernel([g], [h]).item() == pytest.approx(kernel([g]).item()))
Esempio n. 3
0
def test_mlgk_kernel_range_check():
    MarginalizedGraphKernel(
        node_kernel=KroneckerDelta(1e-7),
        edge_kernel=TensorProduct(attribute=SquareExponential(1.0)))
    MarginalizedGraphKernel(
        node_kernel=TensorProduct(feature=KroneckerDelta(0.5)),
        edge_kernel=TensorProduct(attribute=SquareExponential(1.0)))
    with pytest.warns(DeprecationWarning):
        MarginalizedGraphKernel(
            node_kernel=KroneckerDelta(0),
            edge_kernel=TensorProduct(attribute=SquareExponential(1.0)))
    with pytest.warns(DeprecationWarning):
        MarginalizedGraphKernel(
            node_kernel=TensorProduct(feature=KroneckerDelta(0.5)) + 1,
            edge_kernel=SquareExponential(1.0))
    with pytest.warns(DeprecationWarning):
        MarginalizedGraphKernel(
            node_kernel=TensorProduct(feature=KroneckerDelta(0.5)),
            edge_kernel=TensorProduct(attribute=SquareExponential(1.0)) + 1)
    with pytest.warns(DeprecationWarning):
        MarginalizedGraphKernel(
            node_kernel=KroneckerDelta(0.5) * 2,
            edge_kernel=TensorProduct(attribute=SquareExponential(1.0)))
    with pytest.warns(DeprecationWarning):
        MarginalizedGraphKernel(
            node_kernel=TensorProduct(feature=KroneckerDelta(0.5)),
            edge_kernel=TensorProduct(attribute=SquareExponential(1.0)) * 2)
Esempio n. 4
0
def test_mlgk_fixed_hyperparameters():

    g = nx.Graph()
    g.add_node(0, feature=0)
    g.add_node(1, feature=1)
    g.add_node(2, feature=0)
    g.add_edge(0, 1, attribute=1.0)
    g.add_edge(0, 2, attribute=2.0)

    G = [Graph.from_networkx(g)]
    knodeV = TensorProduct(feature=KroneckerDelta(0.5))
    knodeF = TensorProduct(feature=KroneckerDelta(0.5, h_bounds='fixed'))
    kedgeV = TensorProduct(attribute=SquareExponential(1.0))
    kedgeF = TensorProduct(
        attribute=SquareExponential(1.0, length_scale_bounds='fixed'))

    kernelVV = MarginalizedGraphKernel(knodeV, kedgeV)
    kernelVF = MarginalizedGraphKernel(knodeV, kedgeF)
    kernelFV = MarginalizedGraphKernel(knodeF, kedgeV)
    kernelFF = MarginalizedGraphKernel(knodeF, kedgeF)
    assert (len(kernelVV.theta) == len(kernelVF.theta) + 1)
    assert (len(kernelVV.theta) == len(kernelFV.theta) + 1)
    assert (len(kernelVV.theta) == len(kernelFF.theta) + 2)
    assert (len(kernelVV.bounds) == len(kernelVF.bounds) + 1)
    assert (len(kernelVV.bounds) == len(kernelFV.bounds) + 1)
    assert (len(kernelVV.bounds) == len(kernelFF.bounds) + 2)

    Rvv, dRvv = kernelVV(G, eval_gradient=True)
    Rvf, dRvf = kernelVF(G, eval_gradient=True)
    Rfv, dRfv = kernelFV(G, eval_gradient=True)
    Rff, dRff = kernelFF(G, eval_gradient=True)

    assert (Rvv == pytest.approx(Rvf))
    assert (Rvv == pytest.approx(Rfv))
    assert (Rvv == pytest.approx(Rff))
    assert (dRvv.shape[2] == dRvf.shape[2] + 1)
    assert (dRvv.shape[2] == dRfv.shape[2] + 1)
    assert (dRvv.shape[2] == dRff.shape[2] + 2)
    assert (dRvv[:, :, kernelVF.active_theta_mask] == pytest.approx(dRvf))
    assert (dRvv[:, :, kernelFV.active_theta_mask] == pytest.approx(dRfv))
    assert (dRvv[:, :, kernelFF.active_theta_mask] == pytest.approx(dRff))
Esempio n. 5
0
    def __init__(self,
                 use_charge=False,
                 adjacency='default',
                 q=0.01,
                 element_delta=0.2,
                 bond_eps=0.02,
                 charge_eps=0.2):

        self.use_charge = use_charge
        if adjacency == 'default':
            self.adjacency = AtomicAdjacency(shape='tent2', zoom=0.75)
        else:
            self.adjacency = adjacency
        self.q = q
        if use_charge:
            self.node_kernel = TensorProduct(
                element=KroneckerDelta(element_delta),
                charge=SquareExponential(charge_eps),
            )
        else:
            self.node_kernel = TensorProduct(
                element=KroneckerDelta(element_delta))
        self.edge_kernel = TensorProduct(length=SquareExponential(bond_eps))
Esempio n. 6
0
def test_maximin_basic():
    metric = MaxiMin(node_kernel=TensorProduct(element=KroneckerDelta(0.5)),
                     edge_kernel=TensorProduct(length=SquareExponential(0.1)),
                     q=0.01)
    distance = metric(G)
    assert distance.shape == (len(G), len(G))
    assert np.allclose(distance.diagonal(), 0, atol=1e-3)
    assert np.all(distance >= 0)
    assert np.allclose(distance, distance.T, rtol=1e-14, atol=1e-14)

    distance = metric(G, G)
    assert distance.shape == (len(G), len(G))
    assert np.allclose(distance.diagonal(), 0, atol=1e-3)
    assert np.all(distance >= 0)
    assert np.allclose(distance, distance.T, rtol=1e-4, atol=1e-4)

    distance = metric(G, H)
    assert distance.shape == (len(G), len(H))
    assert np.all(distance >= 0)
Esempio n. 7
0
def test_mlgk_large():
    g = nx.Graph()
    n = 24
    for i, row in enumerate(np.random.randint(0, 2, (n, n))):
        g.add_node(i, type=0)
        for j, pred in enumerate(row[:i]):
            if pred:
                g.add_edge(i, j, weight=1)

    dfg = Graph.from_networkx(g, weight='weight')

    q = 0.5
    node_kernel = TensorProduct(type=KroneckerDelta(1.0))
    edge_kernel = Constant(1.0)
    mlgk = MarginalizedGraphKernel(node_kernel, edge_kernel, q=q)

    dot = mlgk([dfg])
    gold = MLGK(dfg, node_kernel, edge_kernel, q, q)

    assert (dot.shape == (1, 1))
    assert (dot.item() == pytest.approx(gold))
Esempio n. 8
0
def test_mlgk_dtype():
    g = nx.Graph()
    n = 8
    for i, row in enumerate(np.random.randint(0, 2, (n, n))):
        g.add_node(i, type=0)
        for j, pred in enumerate(row[:i]):
            if pred:
                g.add_edge(i, j, weight=1)

    dfg = Graph.from_networkx(g, weight='weight')

    q = 0.5
    node_kernel = TensorProduct(type=KroneckerDelta(1.0))
    edge_kernel = Constant(1.0)

    for dtype in [np.float, np.float32, np.float64]:
        mlgk = MarginalizedGraphKernel(node_kernel,
                                       edge_kernel,
                                       q=q,
                                       dtype=dtype)

        assert (mlgk([dfg]).dtype == dtype)
        assert (mlgk.diag([dfg]).dtype == dtype)
Esempio n. 9
0
g1 = nx.Graph()
g1.add_node(0, category=(1, 2), symbol=1)
g1.add_node(1, category=(2, ), symbol=2)
g1.add_edge(0, 1, w=1.0, spectra=[0.5, 0.2])

g2 = nx.Graph()
g2.add_node(0, category=(1, 3), symbol=1)
g2.add_node(1, category=(2, 3, 5), symbol=2)
g2.add_node(2, category=(1, ), symbol=1)
g2.add_edge(0, 1, w=2.0, spectra=[0.1, 0.9, 1.5])
g2.add_edge(0, 2, w=0.5, spectra=[0.4])
g2.add_edge(1, 2, w=0.5, spectra=[0.3, 0.6])

# Define node and edge base kernels using the R-convolution framework
# Reference: Haussler, David. Convolution kernels on discrete structures. 1999.
knode = TensorProduct(symbol=KroneckerDelta(0.5),
                      category=Convolution(KroneckerDelta(0.5)))

kedge = TensorProduct(spectra=Convolution(SquareExponential(0.3)))

# compose the marginalized graph kernel and compute pairwise similarity
mlgk = MarginalizedGraphKernel(knode, kedge, q=0.05)

R = mlgk([Graph.from_networkx(g, weight='w') for g in [g1, g2]])

# normalize the similarity matrix
d = np.diag(R)**-0.5
K = np.diag(d).dot(R).dot(np.diag(d))

print(K)
Esempio n. 10
0
g2.add_edge(0, 1)
g2.add_edge(1, 2)

# {1.0, 1} -- {2.0, 1}
#     \         /
#      {1.0, 2}
g3 = nx.Graph()
g3.add_node(0, radius=1.0, category=1)
g3.add_node(1, radius=2.0, category=1)
g3.add_node(2, radius=1.0, category=2)
g3.add_edge(0, 1)
g3.add_edge(0, 2)
g3.add_edge(1, 2)

# define node and edge kernelets
knode = TensorProduct(radius=SquareExponential(0.5),
                      category=KroneckerDelta(0.5))

kedge = Constant(1.0)

# compose the marginalized graph kernel and compute pairwise similarity
mlgk = MarginalizedGraphKernel(knode, kedge, q=0.05)

R = mlgk([Graph.from_networkx(g) for g in [g1, g2, g3]])

# normalize the similarity matrix
d = np.diag(R)**-0.5
K = np.diag(d).dot(R).dot(np.diag(d))

print(K)
Esempio n. 11
0
from graphdot.kernel.fix import Normalization
from graphdot.metric.maximin import MaxiMin
from ase.build import molecule

np.set_printoptions(linewidth=999, precision=4, suppress=True)

molecules = [
    molecule('CH4'),
    molecule('NH3'),
    molecule('CH3OH'),
    molecule('H2O'),
]

graphs = [Graph.from_ase(m) for m in molecules]

metric = MaxiMin(node_kernel=TensorProduct(element=KroneckerDelta(0.5)),
                 edge_kernel=TensorProduct(length=SquareExponential(0.1)),
                 q=0.01)
kernel = Normalization(
    MarginalizedGraphKernel(
        node_kernel=TensorProduct(element=KroneckerDelta(0.5)),
        edge_kernel=TensorProduct(length=SquareExponential(0.1)),
        q=0.01))


def check_hausdorff(X, Y=None):
    # GPU direct computation
    D = metric(X, Y)
    # Manual approach
    K = kernel(X, Y, nodal=True)
    d = np.sqrt(np.maximum(0, 2 - 2 * K))
Esempio n. 12
0
smiles_list = [
    'CC',  # ethane
    'CCO',  # acetic acid
    'CCN',  # ethylamine
    'C=C',  # ethene
    'CC=C',  # propene
    'CC=CC',  # 2-n-butene
]

# convert to molecular graphs
# nodes(atoms) has 'aromatic', 'charge', 'element', 'hcount' attributes
# edges(bonds) has the 'order' attribute
graphs = [Graph.from_smiles(smi) for smi in smiles_list]

# define node and edge kernelets
knode = TensorProduct(aromatic=KroneckerDelta(0.8),
                      charge=SquareExponential(1.0),
                      element=KroneckerDelta(0.5),
                      hcount=SquareExponential(1.0))

kedge = TensorProduct(order=KroneckerDelta(0.5))

# compose the marginalized graph kernel and compute pairwise similarity
kernel = MarginalizedGraphKernel(knode, kedge, q=0.05)

R = kernel(graphs)

# normalize the similarity matrix and then print
d = np.diag(R)**-0.5
K = np.diag(d).dot(R).dot(np.diag(d))
Esempio n. 13
0
         Graph.from_networkx(unlabeled_graph2)
     ]),
     'knode':
     Constant(1.0),
     'kedge':
     Constant(1.0),
     'q': [0.01, 0.05, 0.1, 0.5]
 },
 'labeled': {
     'graphs':
     Graph.unify_datatype([
         Graph.from_networkx(labeled_graph1),
         Graph.from_networkx(labeled_graph2)
     ]),
     'knode':
     TensorProduct(hybridization=KroneckerDelta(0.3),
                   charge=SquareExponential(1.) + 0.01).normalized,
     'kedge':
     Additive(order=KroneckerDelta(0.3),
              length=SquareExponential(0.05)).normalized,
     'q': [0.01, 0.05, 0.1, 0.5]
 },
 'weighted': {
     'graphs':
     Graph.unify_datatype([
         Graph.from_networkx(weighted_graph1, weight='w'),
         Graph.from_networkx(weighted_graph2, weight='w')
     ]),
     'knode':
     Additive(hybridization=KroneckerDelta(0.3),
              charge=SquareExponential(1.0)).normalized,