Esempio n. 1
0
def query_model(dogo, model, images):
    neighbours = get_images_from_ids(model.query(dogo, k=20), images)

    image_list = SFrame(data=None)

    shown_dogs = {dogo['images'][0][0]}

    for i in range(0, len(neighbours)):
        if len(shown_dogs) < 6:
            if neighbours[i]['images'][0] not in shown_dogs:
                # neighbours[i]['image'].show()
                dogo_clone = neighbours[i:i + 1].copy()
                image_list = image_list.append(SFrame(dogo_clone))
                shown_dogs.add(neighbours[i]['images'][0])
        else:
            break

    return image_list
Esempio n. 2
0
def append_images(json_file):

    # we fill an SFrame with all the given metadata of the dogs
    meta = SFrame.read_json(json_file, orient='records')
    # this is the SFrame that we will fill with the data plus the image, which will be saved in the final file
    image_list = SFrame(data=None)
    # for each image in the images column in the meta SFrame, we add one line in the final SF with one image per line
    for i in range(0, len(meta) - 1):
        dogo = meta[i:i + 1]
        for image in dogo['images'][0]:
            # print image
            dogo_clone = dogo.copy()
            dogo_clone.add_column(SArray([(graphlab.Image(images_path + image))
                                          ]),
                                  name='image')
            dogo_clone.add_column(SArray([image]), name='image_filename')
            image_list = image_list.append(SFrame(dogo_clone))

    image_list.save(filename='prepared_data/')