Esempio n. 1
0
    def _run_interface(self, runtime):

        rada_lol_file = self.inputs.rada_lol_file
        Pajek_net_file = self.inputs.Pajek_net_file
        conmat_file = self.inputs.conmat_file
        export_excel = self.inputs.export_excel

        community_vect = read_lol_file(rada_lol_file)
        corres_nodes, sparse_mat = \
            read_Pajek_corres_nodes_and_sparse_matrix(Pajek_net_file)

        # density
        conmat = np.load(conmat_file)
        corres_mat = conmat[:, corres_nodes][corres_nodes, :]

        # intermodule
        if not is_symetrical(corres_mat):
            corres_mat = corres_mat + np.transpose(corres_mat)

        df_avgmat = _inter_module_avgmat(corres_mat, community_vect)
        df_avgmat_file = os.path.abspath("res_avgmat.csv")
        df_avgmat.to_csv(df_avgmat_file)

        if export_excel:
            try:
                import xlwt  # noqa
                df_avgmat_excel_file = os.path.abspath("res_avgmat.xls")
                df_avgmat.to_excel(df_avgmat_excel_file)

            except ImportError:
                print("Error, xlwt not installed, cannot export Excel file")

        return runtime
Esempio n. 2
0
def test_read_lol_file():
    """
    Test reading modular partition as radatools representation lol_file
    """
    # TODO explicit assert test
    community_vect = read_lol_file(lol_file)
    print(community_vect)
Esempio n. 3
0
def test_compute_modular_matrix():
    """
    Test computing modular matrix where edges between nodes
    belonging to the same module are given the same value
    """
    # TODO explicit assert test
    corres, sp = read_Pajek_corres_nodes_and_sparse_matrix(Pajek_net_file)
    community_vect = read_lol_file(lol_file)
    mod_mat = compute_modular_matrix(sp, community_vect)
    print(mod_mat)
Esempio n. 4
0
def test_compute_roles():
    """
    test_node_roles
    """
    # TODO explicit assert test
    community_vect = read_lol_file(lol_file)
    node_corres, sparse_matrix = read_Pajek_corres_nodes_and_sparse_matrix(
        Pajek_net_file)
    val = compute_roles(community_vect, sparse_matrix, role_type='4roles')
    print(val)
Esempio n. 5
0
    def _run_interface(self, runtime):

        rada_lol_file = self.inputs.rada_lol_file
        Pajek_net_file = self.inputs.Pajek_net_file

        print('Loading Pajek_net_file for reading node_corres')

        node_corres, sparse_mat = read_Pajek_corres_nodes_and_sparse_matrix(
            Pajek_net_file)

        print(sparse_mat.todense())

        print(node_corres.shape, sparse_mat.todense().shape)

        print("Loading community belonging file " + rada_lol_file)

        community_vect = read_lol_file(rada_lol_file)

        print(community_vect)

        print("Computing node roles")

        node_roles, all_Z_com_degree, all_participation_coeff = compute_roles(
            community_vect, sparse_mat, role_type=self.inputs.role_type)

        node_roles_file = os.path.abspath('node_roles.txt')

        np.savetxt(node_roles_file, node_roles, fmt='%d')

        all_Z_com_degree_file = os.path.abspath('all_Z_com_degree.txt')

        np.savetxt(all_Z_com_degree_file, all_Z_com_degree, fmt='%f')

        all_participation_coeff_file = os.path.abspath(
            'all_participation_coeff.txt')

        np.savetxt(all_participation_coeff_file,
                   all_participation_coeff,
                   fmt='%f')

        if self.inputs.compute_ndi:
            ndi_values = compute_node_dissociation_index(
                community_vect, sparse_mat)

            ndi_values_file = os.path.abspath('ndi_values.txt')

            np.savetxt(ndi_values_file, ndi_values, fmt='%f')

        return runtime
Esempio n. 6
0
    def _run_interface(self, runtime):

        rada_lol_file = self.inputs.rada_lol_file
        Pajek_net_file = self.inputs.Pajek_net_file
        group_conmat_file = self.inputs.group_conmat_file
        export_excel = self.inputs.export_excel

        community_vect = read_lol_file(rada_lol_file)
        corres_nodes, sparse_mat = \
            read_Pajek_corres_nodes_and_sparse_matrix(Pajek_net_file)

        # density
        group_conmats = np.load(group_conmat_file)

        if len(group_conmats.shape) == 2:
            group_conmats = group_conmats.reshape(group_conmats.shape[0],
                                                  group_conmats.shape[1], 1)

        print(group_conmats.shape)

        for i in range(group_conmats.shape[2]):
            conmat = group_conmats[:, :, i]
            corres_mat = conmat[:, corres_nodes][corres_nodes, :]

            # intermodule
            if not is_symetrical(corres_mat):
                corres_mat = corres_mat + np.transpose(corres_mat)

            df_avgmat = _inter_module_avgmat(corres_mat, community_vect)
            df_avgmat_file = os.path.abspath("res_avgmat_" + str(i) + ".csv")
            df_avgmat.to_csv(df_avgmat_file)

            if export_excel:
                try:
                    import xlwt  # noqa
                    df_avgmat.to_excel(
                        os.path.abspath("res_avgmat_" + str(i) + ".xls"))

                except ImportError:
                    print("Error xlwt not installed, cannot export Excel file")

        return runtime
Esempio n. 7
0
def visu_graph_modules_roles(net_file,
                             lol_file,
                             roles_file,
                             coords_file,
                             inter_modules=True,
                             modality_type="",
                             s_textcolor="white",
                             c_colval=c_colval_modules,
                             umin=0,
                             umax=50,
                             x_offset=0,
                             y_offset=0,
                             z_offset=0,
                             default_size=10,
                             hub_to_non_hub=3):

    # coords
    coords = np.loadtxt(coords_file)

    if modality_type == "MEG":
        coords = 1000 * coords
        temp = np.copy(coords)
        coords[:, 1] = coords[:, 0]
        coords[:, 0] = temp[:, 1]

    coords[:, 2] += z_offset
    coords[:, 1] += y_offset
    coords[:, 0] += x_offset

    # net file
    node_corres, sparse_matrix = read_Pajek_corres_nodes_and_sparse_matrix(
        net_file)
    corres_coords = coords[node_corres, :]

    corres_coords = coords[node_corres, :]

    # lol file
    community_vect = read_lol_file(lol_file)

    max_col = np.array([val for val in c_colval.keys()]).max()
    community_vect[community_vect > max_col] = max_col
    """Create the connectivity object :"""
    c_connect = np.array(compute_modular_matrix(sparse_matrix, community_vect),
                         dtype='float64')

    c_connect = np.ma.masked_array(c_connect, mask=True)
    c_connect.mask[-1.0 <= c_connect] = False

    if inter_modules:
        c_colval[-1] = "grey"

    else:
        c_connect.mask[-1.0 == c_connect] = True

    c_obj = ConnectObj('ConnectObj1',
                       corres_coords,
                       c_connect,
                       color_by='strength',
                       custom_colors=c_colval)
    """Create the source object :"""
    node_roles = np.array(np.loadtxt(roles_file), dtype='int64')

    # prov_hubs
    prov_hubs = (node_roles[:, 0] == 2) & (node_roles[:, 1] == 1)
    coords_prov_hubs = corres_coords[prov_hubs]
    colors_prov_hubs = [c_colval[i] for i in community_vect[prov_hubs]]

    # prov_no_hubs
    prov_no_hubs = (node_roles[:, 0] == 1) & (node_roles[:, 1] == 1)
    coords_prov_no_hubs = corres_coords[prov_no_hubs]
    colors_prov_no_hubs = [c_colval[i] for i in community_vect[prov_no_hubs]]

    # connec_hubs
    connec_hubs = (node_roles[:, 0] == 2) & (node_roles[:, 1] == 2)
    coords_connec_hubs = corres_coords[connec_hubs]
    colors_connec_hubs = [c_colval[i] for i in community_vect[connec_hubs]]

    # connec_no_hubs
    connec_no_hubs = (node_roles[:, 0] == 1) & (node_roles[:, 1] == 2)
    coords_connec_no_hubs = corres_coords[connec_no_hubs]
    colors_connec_no_hubs = [
        c_colval[i] for i in community_vect[connec_no_hubs]
    ]

    list_sources = []

    if len(coords_prov_no_hubs != 0):
        s_obj1 = SourceObj('prov_no_hubs',
                           coords_prov_no_hubs,
                           color=colors_prov_no_hubs,
                           alpha=.5,
                           edge_width=2.,
                           radius_min=default_size,
                           radius_max=default_size)

        list_sources.append(s_obj1)

    if len(coords_connec_no_hubs != 0):
        s_obj2 = SourceObj('connec_no_hubs',
                           coords_connec_no_hubs,
                           color=colors_connec_no_hubs,
                           alpha=.5,
                           edge_width=2.,
                           radius_min=default_size,
                           radius_max=default_size,
                           symbol='square')

        list_sources.append(s_obj2)

    if len(coords_prov_hubs != 0):
        s_obj3 = SourceObj('prov_hubs',
                           coords_prov_hubs,
                           color=colors_prov_hubs,
                           alpha=.5,
                           edge_width=2.,
                           radius_min=default_size * hub_to_non_hub,
                           radius_max=default_size * hub_to_non_hub)

        list_sources.append(s_obj3)

    if len(coords_connec_hubs != 0):
        s_obj4 = SourceObj('connec_hubs',
                           coords_connec_hubs,
                           color=colors_connec_hubs,
                           alpha=.5,
                           edge_width=2.,
                           radius_min=default_size * hub_to_non_hub,
                           radius_max=default_size * hub_to_non_hub,
                           symbol='square')

        list_sources.append(s_obj4)

    return c_obj, list_sources
Esempio n. 8
0
def visu_graph_modules(net_file,
                       lol_file,
                       coords_file,
                       labels_file=0,
                       inter_modules=True,
                       modality_type="",
                       s_textcolor="white",
                       c_colval=c_colval_modules,
                       umin=0,
                       umax=50,
                       x_offset=0,
                       y_offset=0,
                       z_offset=0):
    # coords
    coords = np.loadtxt(coords_file)

    if modality_type == "MEG":
        coords = 1000 * coords
        temp = np.copy(coords)
        coords[:, 1] = coords[:, 0]
        coords[:, 0] = temp[:, 1]

    coords[:, 2] += z_offset
    coords[:, 1] += y_offset
    coords[:, 0] += x_offset

    # labels
    if labels_file:
        labels = [line.strip() for line in open(labels_file)]
        np_labels = np.array(labels)

    # net file
    node_corres, sparse_matrix = read_Pajek_corres_nodes_and_sparse_matrix(
        net_file)

    # lol file
    community_vect = read_lol_file(lol_file)

    c_connect = np.array(compute_modular_matrix(sparse_matrix, community_vect),
                         dtype='float64')

    c_connect = np.ma.masked_array(c_connect, mask=True)
    c_connect.mask[c_connect > -1.0] = False

    corres_coords = coords[node_corres, :]

    if inter_modules:
        c_colval[-1] = "grey"
    """Create the connectivity object :"""
    c_obj = ConnectObj('ConnectObj1',
                       corres_coords,
                       c_connect,
                       color_by='strength',
                       custom_colors=c_colval)

    # source object
    colors_nodes = []
    for i in community_vect:
        if i in c_colval.keys():
            colors_nodes.append(c_colval[i])
        else:
            colors_nodes.append("black")

    if labels_file:
        corres_labels = np_labels[node_corres]
        s_obj = SourceObj('SourceObj1',
                          corres_coords,
                          text=corres_labels,
                          text_color=s_textcolor,
                          text_size=10,
                          color=colors_nodes,
                          alpha=.5,
                          edge_width=2.,
                          radius_min=10.,
                          radius_max=10.)

    else:
        s_obj = SourceObj('SourceObj1',
                          corres_coords,
                          text_color=s_textcolor,
                          text_size=10,
                          color=colors_nodes,
                          alpha=.5,
                          edge_width=2.,
                          radius_min=10.,
                          radius_max=10.)

    return c_obj, s_obj
Esempio n. 9
0
def compute_nodes_rada_df(local_dir,
                          gm_coords=[],
                          coords_file="",
                          gm_labels=[],
                          labels_file="",
                          radatools_version="3.2",
                          mapflow=[],
                          mapflow_name=""):
    """node properties df"""
    if radatools_version == "3.2":
        net_prop_dir = "net_prop"

    elif radatools_version == "4.0":
        net_prop_dir = "prep_rada"

    elif radatools_version == "5.0":
        net_prop_dir = "net_prop"

    elif radatools_version == "run":
        net_prop_dir = ""

    else:
        print("Warning, could not find radatools_version {}".format(
            radatools_version))
        return

    list_df = []

    if len(mapflow) == 0:

        Pajek_file = os.path.join(local_dir, net_prop_dir, "Z_List.net")

        if os.path.exists(Pajek_file):

            columns = []
            columns_names = []

            # nodes in the connected graph
            node_corres = read_Pajek_corres_nodes(Pajek_file)

            print(os.path.exists(coords_file))

            if os.path.exists(coords_file) and len(gm_coords):

                # MNI coordinates
                coords = np.array(np.loadtxt(coords_file), dtype=int)

                # node_coords
                node_coords = coords[node_corres, :]

                # where_in_gm_mask
                where_in_gm_mask = where_in_coords(node_coords, gm_coords)

                where_in_gm_mask = where_in_gm_mask.reshape(
                    where_in_gm_mask.shape[0], 1)

                columns.append(where_in_gm_mask)
                columns_names.append('Where_in_GM_mask')

                if os.path.exists(labels_file):

                    labels = np.array(
                        [line.strip() for line in open(labels_file)],
                        dtype=str)

                    node_labels = labels[node_corres].reshape(-1, 1)

                    columns.append(node_coords)
                    columns_names.append('labels')

                columns.append(node_coords)
                columns_names.expend(['MNI_x', 'MNI_y', 'MNI_z'])

            elif os.path.exists(labels_file) and len(gm_labels):

                # TODO
                labels = np.array([line.strip() for line in open(labels_file)],
                                  dtype=str)

                node_labels = labels[node_corres].reshape(-1, 1)

                where_in_gm_mask = where_in_labels(node_labels, labels)

                columns.append(where_in_gm_mask)
                columns_names.append('Where_in_GM_mask')

                columns.append(node_labels)
                columns_names.append('labels')
                0 / 0

            elif len(gm_labels):

                node_labels = np.array(gm_labels)[node_corres].reshape(-1, 1)

                where_in_gm_mask = where_in_labels(node_labels,
                                                   gm_labels).reshape(-1, 1)

                print(node_labels)
                print(where_in_gm_mask)

                columns.append(where_in_gm_mask)
                columns_names.append('Where_in_GM_mask')

                columns.append(node_labels)
                columns_names.append('labels')

            else:
                print("No labels, no coords")

                columns.append(node_corres)
                columns_names.append('node_corres')

            print(columns)
            print(columns_names)

            list_df.append(
                pd.DataFrame(np.concatenate(tuple(columns), axis=1),
                             columns=columns_names))

        else:
            print("Missing {}".format(Pajek_file))

        info_nodes_file = os.path.join(local_dir, net_prop_dir,
                                       "Z_List-info_nodes.txt")

        print(info_nodes_file)

        if os.path.exists(info_nodes_file):

            # loading info_nodes
            df_node_info = pd.read_table(info_nodes_file)
            list_df.append(df_node_info)

        # modules /community_vect
        partition_file = os.path.join(local_dir, "community_rada",
                                      "Z_List.lol")

        if os.path.exists(partition_file):

            # loading partition_file
            community_vect = read_lol_file(partition_file)
            list_df.append(pd.DataFrame(community_vect, columns=['Module']))

        # node roles
        roles_file = os.path.join(local_dir, "node_roles", "node_roles.txt")

        part_coeff_file = os.path.join(local_dir, "node_roles",
                                       "all_participation_coeff.txt")

        Z_com_degree_file = os.path.join(local_dir, "node_roles",
                                         "all_Z_com_degree.txt")

        if os.path.exists(roles_file) and os.path.exists(part_coeff_file) and \
                os.path.exists(Z_com_degree_file):

            # loding node roles
            node_roles = np.array(np.loadtxt(roles_file), dtype=int)

            part_coeff = np.loadtxt(part_coeff_file)
            part_coeff = part_coeff.reshape(part_coeff.shape[0], 1)

            Z_com_degree = np.loadtxt(Z_com_degree_file)
            Z_com_degree = Z_com_degree.reshape(Z_com_degree.shape[0], 1)

            list_df.append(
                pd.DataFrame(np.concatenate(
                    (node_roles, part_coeff, Z_com_degree), axis=1),
                             columns=[
                                 'Role_quality', 'Role_quantity',
                                 'Participation_coefficient',
                                 'Z_community_degree'
                             ]))
        # ndi values
        ndi_values_file = os.path.join(local_dir, "node_roles",
                                       "ndi_values.txt")

        if os.path.exists(ndi_values_file):

            # loding node roles
            ndi_values = np.array(np.loadtxt(ndi_values_file))
            list_df.append(
                pd.DataFrame(ndi_values, columns=['Node_Dissociation_Index']))

    else:

        # Multiple files (mapflow)
        for i, cond in enumerate(mapflow):

            list_strip_df = []

            Pajek_file = os.path.join(local_dir, "prep_rada", "mapflow",
                                      "_prep_rada" + str(i), "Z_List.net")

            if os.path.exists(coords_file) and os.path.exists(Pajek_file) and \
                    os.path.exists(labels_file):

                # labels
                labels = np.array([line.strip() for line in open(labels_file)],
                                  dtype=str)

                # MNI coordinates
                coords = np.array(np.loadtxt(coords_file), dtype=int)

                # nodes in the connected graph
                node_corres = read_Pajek_corres_nodes(Pajek_file)

                # node_coords
                node_coords = coords[node_corres, :]
                node_labels = labels[node_corres].reshape(-1, 1)

                # where_in_gm_mask
                where_in_gm_mask = where_in_coords(node_coords, gm_coords)

                where_in_gm_mask = where_in_gm_mask.reshape(
                    where_in_gm_mask.shape[0], 1)

                # print where_in_gm_mask
                print(where_in_gm_mask.shape)

                list_strip_df.append(
                    pd.DataFrame(np.concatenate(
                        (where_in_gm_mask, node_labels, node_coords), axis=1),
                                 columns=[
                                     'Where_in_GM_mask', 'labels', 'MNI_x',
                                     'MNI_y', 'MNI_z'
                                 ]))
            else:
                if not os.path.exists(coords_file):
                    print("Missing {}".format(coords_file))

                if not os.path.exists(Pajek_file):
                    print("Missing {}".format(Pajek_file))

                if not os.path.exists(labels_file):
                    print("Missing {}".format(labels_file))

            info_nodes_file = os.path.join(local_dir, net_prop_dir,
                                           "Z_List-info_nodes.txt")

            print(info_nodes_file)

            if os.path.exists(info_nodes_file):

                # loading info_nodes
                df_node_info = pd.read_table(info_nodes_file)
                list_strip_df.append(df_node_info)

            # modules /community_vect
            partition_file = os.path.join(local_dir, "community_rada",
                                          "mapflow",
                                          "_community_rada" + str(i),
                                          "Z_List.lol")

            if os.path.exists(partition_file):

                # loading partition_file
                community_vect = read_lol_file(partition_file)
                list_strip_df.append(
                    pd.DataFrame(community_vect, columns=['Module']))

            # node roles
            roles_file = os.path.join(local_dir, "node_roles", "mapflow",
                                      "_node_roles" + str(i), "node_roles.txt")

            part_coeff_file = os.path.join(local_dir, "node_roles", "mapflow",
                                           "_node_roles" + str(i),
                                           "all_participation_coeff.txt")

            Z_com_degree_file = os.path.join(local_dir, "node_roles",
                                             "mapflow", "_node_roles" + str(i),
                                             "all_Z_com_degree.txt")

            if os.path.exists(roles_file) and os.path.exists(part_coeff_file) \
                    and os.path.exists(Z_com_degree_file):

                node_roles = np.array(np.loadtxt(roles_file), dtype=int)

                part_coeff = np.loadtxt(part_coeff_file)
                part_coeff = part_coeff.reshape(part_coeff.shape[0], 1)

                Z_com_degree = np.loadtxt(Z_com_degree_file)
                Z_com_degree = Z_com_degree.reshape(Z_com_degree.shape[0], 1)

                list_strip_df.append(
                    pd.DataFrame(np.concatenate(
                        (node_roles, part_coeff, Z_com_degree), axis=1),
                                 columns=[
                                     'Role_quality', 'Role_quantity',
                                     'Participation_coefficient',
                                     'Z_community_degree'
                                 ]))
            # ndi values
            ndi_values_file = os.path.join(local_dir, "node_roles", "mapflow",
                                           "_node_roles" + str(i),
                                           "ndi_values.txt")

            if os.path.exists(ndi_values_file):

                ndi_values = np.array(np.loadtxt(ndi_values_file))
                list_strip_df.append(
                    pd.DataFrame(ndi_values,
                                 columns=['Node_Dissociation_Index']))

            # Converting list_strip_df to df, and adding it to list_df
            if len(list_strip_df):
                nb_nodes = len(list_strip_df[0].index)
                list_strip_df.append(
                    pd.DataFrame([i] * nb_nodes, columns=[mapflow_name]))
                strip_df = pd.concat(list_strip_df, axis=1)
                list_df.append(strip_df)
    return list_df
Esempio n. 10
0
def compute_nodes_rada_df(local_dir,
                          gm_coords,
                          coords_file,
                          labels_file,
                          radatools_version="3.2"):
    """node properties df"""
    if radatools_version == "3.2":
        net_prop_dir = "net_prop"

    elif radatools_version == "4.0":
        net_prop_dir = "prep_rada"

    elif radatools_version == "5.0":
        net_prop_dir = "net_prop"

    else:
        print("Warning, could not find radatools_version {}".format(
            radatools_version))
        return

    list_df = []

    Pajek_file = os.path.join(local_dir, "prep_rada", "Z_List.net")

    if os.path.exists(coords_file) and os.path.exists(Pajek_file) and \
            os.path.exists(labels_file):

        # labels
        labels = np.array([line.strip() for line in open(labels_file)],
                          dtype=str)

        # MNI coordinates
        coords = np.array(np.loadtxt(coords_file), dtype=int)

        # nodes in the connected graph
        node_corres = read_Pajek_corres_nodes(Pajek_file)

        # node_coords
        node_coords = coords[node_corres, :]
        node_labels = labels[node_corres].reshape(-1, 1)

        # where_in_gm_mask
        where_in_gm_mask = where_in_coords(node_coords, gm_coords)

        where_in_gm_mask = where_in_gm_mask.reshape(where_in_gm_mask.shape[0],
                                                    1)

        # print where_in_gm_mask
        print(where_in_gm_mask.shape)

        list_df.append(
            pd.DataFrame(np.concatenate(
                (where_in_gm_mask, node_labels, node_coords), axis=1),
                         columns=[
                             'Where_in_GM_mask', 'labels', 'MNI_x', 'MNI_y',
                             'MNI_z'
                         ]))
    else:
        if not os.path.exists(coords_file):
            print("Missing {}".format(coords_file))

        if not os.path.exists(Pajek_file):
            print("Missing {}".format(Pajek_file))

        if not os.path.exists(labels_file):
            print("Missing {}".format(labels_file))

    info_nodes_file = os.path.join(local_dir, net_prop_dir,
                                   "Z_List-info_nodes.txt")

    print(info_nodes_file)

    if os.path.exists(info_nodes_file):

        # loading info_nodes
        df_node_info = pd.read_table(info_nodes_file)
        list_df.append(df_node_info)

    # modules /community_vect
    partition_file = os.path.join(local_dir, "community_rada", "Z_List.lol")

    if os.path.exists(partition_file):

        # loading partition_file
        community_vect = read_lol_file(partition_file)
        list_df.append(pd.DataFrame(community_vect, columns=['Module']))

    # node roles
    roles_file = os.path.join(local_dir, "node_roles", "node_roles.txt")

    part_coeff_file = os.path.join(local_dir, "node_roles",
                                   "all_participation_coeff.txt")

    Z_com_degree_file = os.path.join(local_dir, "node_roles",
                                     "all_Z_com_degree.txt")

    if os.path.exists(roles_file) and os.path.exists(part_coeff_file) and \
            os.path.exists(Z_com_degree_file):

        # loding node roles
        node_roles = np.array(np.loadtxt(roles_file), dtype=int)

        part_coeff = np.loadtxt(part_coeff_file)
        part_coeff = part_coeff.reshape(part_coeff.shape[0], 1)

        Z_com_degree = np.loadtxt(Z_com_degree_file)
        Z_com_degree = Z_com_degree.reshape(Z_com_degree.shape[0], 1)

        list_df.append(
            pd.DataFrame(np.concatenate((node_roles, part_coeff, Z_com_degree),
                                        axis=1),
                         columns=[
                             'Role_quality', 'Role_quantity',
                             'Participation_coefficient', 'Z_community_degree'
                         ]))
    # ndi values
    ndi_values_file = os.path.join(local_dir, "node_roles", "ndi_values.txt")

    if os.path.exists(ndi_values_file):

        # loding node roles
        ndi_values = np.array(np.loadtxt(ndi_values_file))
        list_df.append(
            pd.DataFrame(ndi_values, columns=['Node_Dissociation_Index']))

    return list_df