Esempio n. 1
0
    def add_edge(self, edge):
        """
        Anade una arista dirigida al grafo conectando dos nodos.
        
        Una arista es un par de nodos de la forma (nodo1, nodo2).

        @type  edge: tuple
        @param edge: Arista.

        @raise Exception: Si la arista a anadir produce un ciclo, no sera anadida y se lanzara una excepcion.
        """
        super().add_edge(edge)
        cycle = find_cycle(self)
        if cycle:
            raise Exception("La arista " + str(edge) + " produciria el ciclo " + str(cycle))
Esempio n. 2
0
def transitive_edges(graph):
    """
    Return a list of transitive edges.
    
    Example of transitivity within graphs: A -> B, B -> C, A ->  C
    in this case the transitive edge is: A -> C
    
    @attention: This function is only meaningful for directed acyclic graphs.
    
    @type graph: digraph
    @param graph: Digraph
    
    @rtype: List
    @return: List containing tuples with transitive edges (or an empty array if the digraph
        contains a cycle) 
    """
    #if the graph contains a cycle we return an empty array
    if not len(find_cycle(graph)) == 0:
        return []
    
    tranz_edges = [] # create an empty array that will contain all the tuples
    
    #run trough all the nodes in the graph
    for start in topological_sorting(graph):
        #find all the successors on the path for the current node
        successors = [] 
        for a in traversal(graph,start,'pre'):
            successors.append(a)
        del successors[0] #we need all the nodes in it's path except the start node itself
        
        for next in successors:
            #look for an intersection between all the neighbors of the 
            #given node and all the neighbors from the given successor
            intersect_array = _intersection(graph.neighbors(next), graph.neighbors(start) )
            for a in intersect_array:
                if graph.has_edge((start, a)):
                    ##check for the detected edge and append it to the returned array   
                    tranz_edges.append( (start,a) )      
    return tranz_edges # return the final array
Esempio n. 3
0
def critical_path(graph):
    """
    Compute and return the critical path in an acyclic directed weighted graph.
    
    @attention: This function is only meaningful for directed weighted acyclic graphs
    
    @type graph: digraph 
    @param graph: Digraph
    
    @rtype: List
    @return: List containing all the nodes in the path (or an empty array if the graph
        contains a cycle)
    """
    #if the graph contains a cycle we return an empty array
    if not len(find_cycle(graph)) == 0:
        return []
    
    #this empty dictionary will contain a tuple for every single node
    #the tuple contains the information about the most costly predecessor 
    #of the given node and the cost of the path to this node
    #(predecessor, cost)
    node_tuples = {}
        
    topological_nodes = topological_sorting(graph)
    
    #all the tuples must be set to a default value for every node in the graph
    for node in topological_nodes: 
        node_tuples.update( {node :(None, 0)}  )
    
    #run trough all the nodes in a topological order
    for node in topological_nodes:
        predecessors =[]
        #we must check all the predecessors
        for pre in graph.incidents(node):
            max_pre = node_tuples[pre][1]
            predecessors.append( (pre, graph.edge_weight( (pre, node) ) + max_pre )   )
        
        max = 0; max_tuple = (None, 0)
        for i in predecessors:#look for the most costly predecessor
            if i[1] >= max:
                max = i[1]
                max_tuple = i
        #assign the maximum value to the given node in the node_tuples dictionary
        node_tuples[node] = max_tuple                 
    
    #find the critical node
    max = 0; critical_node = None
    for k,v in list(node_tuples.items()):
        if v[1] >= max:
            max= v[1]
            critical_node = k
            
    
    path = []
    #find the critical path with backtracking trought the dictionary
    def mid_critical_path(end):
        if node_tuples[end][0] != None:
            path.append(end)
            mid_critical_path(node_tuples[end][0])
        else:
            path.append(end)
    #call the recursive function
    mid_critical_path(critical_node)
    
    path.reverse()
    return path #return the array containing the critical path