def test_constructor(self): """Test that a ``PoseR2`` instance can be created. """ r2a = PoseR2([1, 2]) r2b = PoseR2(np.array([3, 4])) self.assertIsInstance(r2a, PoseR2) self.assertIsInstance(r2b, PoseR2)
def test_sub(self): """Test that the overloaded ``__sub__`` method works as expected. """ r2a = PoseR2([1, 2]) r2b = PoseR2([3, 4]) expected = PoseR2([2, 2]) self.assertAlmostEqual( np.linalg.norm((r2b - r2a).to_array() - expected), 0.)
def test_add(self): """Test that the overloaded ``__add__`` method works as expected. """ r2a = PoseR2([1, 2]) r2b = PoseR2([3, 4]) expected = PoseR2([4, 6]) self.assertAlmostEqual( np.linalg.norm((r2a + r2b).to_array() - expected), 0.) r2a += r2b self.assertAlmostEqual(np.linalg.norm(r2a.to_array() - expected), 0.)
def test_orientation(self): """Test that the ``orientation`` property works as expected. """ r2 = PoseR2([1, 2]) self.assertEqual(r2.orientation, 0.)
def test_calc_jacobians(self): """Test that the ``calc_jacobians`` method works as expected. """ p1 = PoseR2([1, 2]) p2 = PoseR2([3, 4]) estimate = PoseR2([0, 0]) v1 = Vertex(1, p1) v2 = Vertex(2, p2) e = EdgeOdometry([1, 2], np.eye(2), estimate, [v1, v2]) jacobians = e.calc_jacobians() self.assertAlmostEqual(np.linalg.norm(jacobians[0] - np.eye(2)), 0.) self.assertAlmostEqual(np.linalg.norm(jacobians[1] + np.eye(2)), 0.)
def test_copy(self): """Test that the ``copy`` method works as expected. """ p1 = PoseR2([1, 2]) p2 = p1.copy() p2[0] = 0 self.assertEqual(p1[0], 1)
def test_inverse(self): """Test that the ``inverse`` property works as expected. """ r2 = PoseR2([1, 2]) true_inv = np.array([-1, -2]) self.assertAlmostEqual( np.linalg.norm(r2.inverse.to_array() - true_inv), 0.)
def test_to_compact(self): """Test that the ``to_compact`` method works as expected. """ r2 = PoseR2([1, 2]) arr = r2.to_compact() self.assertIsInstance(arr, np.ndarray) self.assertNotIsInstance(arr, PoseR2) self.assertAlmostEqual(np.linalg.norm(arr - np.array([1, 2])), 0.)
def setUp(self): r"""Setup a simple ``Graph`` in :math:`\mathbb{R}^2`. """ np.random.seed(0) p1 = PoseR2(np.random.random_sample(2)) p2 = PoseR2(np.random.random_sample(2)) p3 = PoseR2(np.random.random_sample(2)) estimate = PoseR2([0, 0]) v1 = Vertex(1, p1) v2 = Vertex(2, p2) v3 = Vertex(3, p3) e1 = EdgeOdometry([1, 2], np.eye(2), estimate, [v1, v2]) e2 = EdgeOdometry([3, 2], 2 * np.eye(2), estimate, [v3, v2]) self.g = Graph([e1, e2], [v1, v2, v3])
def test_position(self): """Test that the ``position`` property works as expected. """ r2 = PoseR2([1, 2]) pos = r2.position true_pos = np.array([1, 2]) self.assertIsInstance(pos, np.ndarray) self.assertNotIsInstance(pos, PoseR2) self.assertAlmostEqual(np.linalg.norm(true_pos - pos), 0.)
def test_jacobian_self_ominus_other_compact(self): """Test that the ``jacobian_self_ominus_other_wrt_self_compact`` and ``jacobian_self_ominus_other_wrt_other_compact`` methods are correctly implemented. """ np.random.seed(0) for _ in range(10): p1 = PoseR2(np.random.random_sample(2)) p2 = PoseR2(np.random.random_sample(2)) v1 = Vertex(1, p1) v2 = Vertex(2, p2) e = EdgeOMinusCompact([1, 2], np.eye(2), np.zeros(2), [v1, v2]) numerical_jacobians = BaseEdge.calc_jacobians(e) analytical_jacobians = e.calc_jacobians() self.assertEqual(len(numerical_jacobians), len(analytical_jacobians)) for n, a in zip(numerical_jacobians, analytical_jacobians): self.assertAlmostEqual(np.linalg.norm(n - a), 0.)
def test_calc_chi2_gradient_hessian(self): """Test that the ``calc_chi2_gradient_hessian`` method works as expected. """ p1 = PoseR2([1, 3]) p2 = PoseR2([2, 4]) estimate = PoseR2([0, 0]) v1 = Vertex(0, p1, 0) v2 = Vertex(1, p2, 1) e = EdgeOdometry([0, 1], np.eye(2), estimate, [v1, v2]) chi2, gradient, hessian = e.calc_chi2_gradient_hessian() self.assertEqual(chi2, 2.) self.assertAlmostEqual(np.linalg.norm(gradient[0] + np.ones(2)), 0.) self.assertAlmostEqual(np.linalg.norm(gradient[1] - np.ones(2)), 0.) self.assertAlmostEqual(np.linalg.norm(hessian[(0, 0)] - np.eye(2)), 0.) self.assertAlmostEqual(np.linalg.norm(hessian[(0, 1)] + np.eye(2)), 0.) self.assertAlmostEqual(np.linalg.norm(hessian[(1, 1)] - np.eye(2)), 0.)
def test_plot(self): """Test that the ``plot`` method is not implemented. """ v_none = Vertex(0, None) v_r2 = Vertex(1, PoseR2([1, 2])) v_se2 = Vertex(2, PoseSE2([1, 2], 3)) v_r3 = Vertex(3, PoseR3([1, 2, 3])) v_se3 = Vertex(4, PoseSE3([1, 2, 3], [0.5, 0.5, 0.5, 0.5])) with self.assertRaises(NotImplementedError): e = EdgeOdometry(0, 1, 0, [v_none, v_none]) e.plot() for v in [v_r2, v_se2, v_r3, v_se3]: e = EdgeOdometry(0, 1, 0, [v, v]) e.plot()
def test_plot(self): """Test that a ``Vertex`` can be plotted. """ v_none = Vertex(0, None) v_r2 = Vertex(1, PoseR2([1, 2])) v_se2 = Vertex(2, PoseSE2([1, 2], 3)) v_r3 = Vertex(3, PoseR3([1, 2, 3])) v_se3 = Vertex(4, PoseSE3([1, 2, 3], [0.5, 0.5, 0.5, 0.5])) with self.assertRaises(NotImplementedError): v_none.plot() for v in [v_r2, v_se2, v_r3, v_se3]: fig = plt.figure() if len(v.pose.position) == 3: fig.add_subplot(111, projection='3d') v.plot()