Esempio n. 1
0
def solve(G):
    """
    Args:
        G: networkx.Graph

    Returns:
        T: networkx.Graph
    """

    g = GraphSolver(G)
    start = g.find_leaf_path()
    if start is None:
        start = first_heuristic(g)
    graph_choices = []
    for v in g.neighbors(start):
        newG = G.copy()
        new_g = GraphSolver(newG)
        new_g.visit(start)
        new_g.visit(v, (start, v))
        graph_choices.append(new_g)
    minT = G
    minCost = float('inf')
    for g_option in graph_choices:
        g_option.dijkstra_solve_graph(start, calculate_heuristic,
                                      first_heuristic)
        optimize_sorted(g_option, g_option.T, cycle_killer_fn=kill_cycle)
        cost = average_pairwise_distance(g_option.T)
        if cost < minCost:
            minCost = cost
            minT = g_option.T
    return minT
Esempio n. 2
0
def solve(G):
    global saved_costs, solver_filenames

    g = GraphSolver(G)
    for v in list(g.G.nodes):
        if len(
                list(g.neighbors(v))
        ) == g.n - 1:  # Special case when one vertex is connected to all of them
            g.visit(v)
            return g.T

    solvers = [
        import_module(solver_filename) for solver_filename in solver_filenames
    ]
    skipped_costs = []
    skipped_solvers = []

    # Don't calculate for inputs we already know costs for deterministically
    skip = []
    if cacher is not None:
        for i in range(len(solvers)):
            # It turns out all of our algorithms are not deterministic so that condition is going to be deleted
            if cacher.is_cached(input_filename, solver_filenames[i]):
                # if getattr(solvers[i], 'isDeterministic', False) and cacher.is_cached(input_filename, solver_filenames[i]):
                skipped_costs.append(
                    cacher.get_cost(input_filename, solver_filenames[i]))
                skip.append(i)
                skipped_solvers.append(solver_filenames[i])
    solver_filenames = [
        f for i, f in enumerate(solver_filenames) if i not in skip
    ]
    solvers = [s for i, s in enumerate(solvers) if i not in skip]
    trees = []  # to be populated

    ############### Parallelizing ########################
    if len(solvers) > 0:
        pool = Pool(len(solvers))

        async_solvers = [
            pool.apply_async(solver.solve, [G]) for solver in solvers
        ]
        trees = [
            async_solver.get(1000000000) for async_solver in async_solvers
        ]

        pool.close()
        pool.join()

    ################ Non - parallelizing ####################

    # trees = [solver.solve(G) for solver in solvers]

    #########################################################

    # Cache costs
    costs = [average_pairwise_distance(t) for t in trees]
    if cacher is not None:
        for i in range(len(trees)):
            cacher.cache_if_better_or_none(input_filename, solver_filenames[i],
                                           costs[i], None, trees[i])

    # Create lists with the same length
    all_trees = [None] * len(skipped_costs) + trees
    all_costs = skipped_costs + costs
    solver_filenames = skipped_solvers + solver_filenames

    # Sort
    all_trees = [
        tree for c, tree in sorted(zip(all_costs, all_trees),
                                   key=lambda pair: pair[0])
    ]
    solver_filenames = [
        filename for c, filename in sorted(zip(all_costs, solver_filenames),
                                           key=lambda pair: pair[0])
    ]
    all_costs = sorted(all_costs)

    # Print saved costs
    second_smallest = all_costs[1]
    individual_saved_costs = [
        second_smallest - cost if second_smallest - cost > 0 else 0
        for cost in all_costs
    ]
    saved_costs = [sum(x) for x in zip(saved_costs, individual_saved_costs)]
    print(saved_costs)

    # Get the tree to return
    min_tree = all_trees[0]
    if min_tree is None:
        out_file = join(OUTPUT_DIRECTORY, input_filename[:-3],
                        solver_filenames[0] + '.out')
        if isfile(out_file):
            print('read outfile', out_file)
            min_tree = read_output_file(out_file, G)
        else:
            print(
                "WARNING: all_prev_outputs.txt is probably out of sync. {} was not found."
                .format(out_file))
            print('Recalculating for input {}'.format(input_filename))
            # Recalculate for this input
            prev_type = cacher.set_cache_type('none')
            min_tree = solve(G)
            cacher.set_cache_type(prev_type)

    return min_tree