Esempio n. 1
0
 def test_baseembed_er(self):
     n_components = 4
     embed = BaseEmbed(n_components=n_components)
     n = 10
     M = 20
     A = er_nm(n, M) + 5
     embed._reduce_dim(A)
     self.assertEqual(embed.latent_left_.shape, (n, n_components))
     self.assertTrue(embed.latent_right_ is None)
Esempio n. 2
0
    def test_algorithms(self):
        embed = BaseEmbed(n_components=self.n, algorithm="full")
        embed._reduce_dim(self.A)
        self.assertEqual(embed.latent_left_.shape, (self.n, self.n))
        self.assertEqual(embed.latent_right_.shape, (self.n, self.n))

        # When algoritm != 'full', cannot decompose to all dimensions
        embed = BaseEmbed(n_components=self.n, algorithm="truncated")
        with self.assertRaises(ValueError):
            embed._reduce_dim(self.A)

        embed = BaseEmbed(n_components=self.n, algorithm="randomized")
        with self.assertRaises(ValueError):
            embed._reduce_dim(self.A)
Esempio n. 3
0
 def test_baseembed(self):
     embed = BaseEmbed(n_components=None)
     n = 10
     M = 20
     A = er_nm(n, M) + 5
     embed._reduce_dim(A)