cbar=False, font_scale=1.4, vmin=0, vmax=1, inner_hier_labels=right_labels, hier_label_fontsize=16, cmap=cmap, center=None, ) side_label_kws = dict(labelpad=45, fontsize=24) fig, ax = plt.subplots(3, 2, figsize=(10, 17)) # SBM heatmap(sbm.p_mat_, ax=ax[0, 0], title="Probability matrix", **heatmap_kws) heatmap(np.squeeze(sbm.sample()), ax=ax[0, 1], title="Random sample", **heatmap_kws) ax[0, 0].set_ylabel("SBM", **side_label_kws) # DCSBM heatmap(dcsbm.p_mat_, ax=ax[1, 0], **heatmap_kws) heatmap(np.squeeze(dcsbm.sample()), ax=ax[1, 1], **heatmap_kws) ax[1, 0].set_ylabel("DCSBM", **side_label_kws) # RDPG heatmap(rdpg.p_mat_, ax=ax[2, 0], **heatmap_kws) heatmap(np.squeeze(rdpg.sample()), ax=ax[2, 1], **heatmap_kws) ax[2, 0].set_ylabel("RDPG", **side_label_kws)
sbme = SBMEstimator(directed=True,loops=False) sbme.fit(adj, y=labels) print("SBM \"B\" matrix:") print(sbme.block_p_) heatmap(sbme.p_mat_, inner_hier_labels=labels, vmin=0, vmax=1, font_scale=1.5, title="SBM probability matrix", sort_nodes=True) plt.savefig("SBMProbabilityMatrix", bbox_inches='tight') heatmap(sbme.sample()[0], inner_hier_labels=labels, font_scale=1.5, title="SBM sample", sort_nodes=True) plt.savefig("SBMSample", bbox_inches='tight') dcsbme = DCSBMEstimator(directed=True,loops=False) dcsbme.fit(adj, y=labels) print("DCSBM \"B\" matrix:") print(dcsbme.block_p_) heatmap(dcsbme.p_mat_, inner_hier_labels=labels, font_scale=1.5, title="DCSBM probability matrix",