Esempio n. 1
0
 def meta_setup(self):
     req_cols = {
         'x': 'float64',
         'y': 'float64'
     }
     required = {
         'points_df_in': req_cols,
     }
     input_meta = self.get_input_meta()
     output_cols = ({
             'distance_df': {
                 'distance_cudf': 'float64',
                 'x': 'float64',
                 'y': 'float64'
             },
             'distance_abs_df': {
                 'distance_abs_cudf': 'float64',
                 'x': 'float64',
                 'y': 'float64'
             }
         })
     if 'points_df_in' in input_meta:
         col_from_inport = input_meta['points_df_in']
         # additional ports
         output_cols['distance_df'].update(col_from_inport)
         output_cols['distance_abs_df'].update(col_from_inport)
     return MetaData(inports=required, outports=output_cols)
Esempio n. 2
0
 def meta_setup(self):
     input_meta = self.get_input_meta()
     if issubclass(self.instanceClass, TrainableNM):
         input_meta = self.get_input_meta()
         if self.INPUT_NM in input_meta:
             if (share_weight in self.conf and
                     self.conf[share_weight] == 'Reuse'):
                 self.conf = input_meta[self.INPUT_NM]
     if self.instance is not None:
         inports = self.instance.input_ports
         outports = self.instance.output_ports
     else:
         try:
             p_inports = self.instanceClass.input_ports
             p_outports = self.instanceClass.output_ports
             feeder = FeedProperty(self.conf)
             inports = p_inports.fget(feeder)
             outports = p_outports.fget(feeder)
         except Exception:
             inports = None
             outports = None
     required = {}
     out_meta = {}
     if inports is not None:
         for k in inports.keys():
             required[k] = serialize_type(inports[k])
     if outports is not None:
         for k in outports.keys():
             out_meta[k] = serialize_type(outports[k])
     if self.instance is not None:
         out_meta[self.OUTPUT_NM] = self.conf
     metadata = MetaData(inports=required, outports=out_meta)
     return metadata
Esempio n. 3
0
 def meta_setup(self):
     columns_out = {
         'points_df_out': {
             'x': 'float64',
             'y': 'float64'
         },
     }
     return MetaData(inports={}, outports=columns_out)
Esempio n. 4
0
 def meta_setup(self):
     required = {}
     output = {}
     output['axes'] = []
     output['element'] = {}
     output['element']['types'] = ['VoidType']
     output['element']['fields'] = 'None'
     output['element']['parameters'] = '{}'
     required = self.get_input_meta()
     required['input_tensor'] = copy.deepcopy(output)
     metadata = MetaData(inports=required,
                         outports={self.OUTPUT_PORT_NAME: {}})
     return metadata
Esempio n. 5
0
 def meta_setup(self, ):
     cols_required = {'x': 'float64', 'y': 'float64'}
     required = {
         'points_df_in': cols_required,
         'points_ddf_out': cols_required
     }
     input_meta = self.get_input_meta()
     output_cols = ({'points_ddf_out': {'x': 'float64', 'y': 'float64'}})
     if 'points_df_in' in input_meta:
         col_from_inport = input_meta['points_df_in']
         # additional ports
         output_cols['points_ddf_out'].update(col_from_inport)
     return MetaData(inports=required, outports=output_cols)
    def meta_setup(self):
        colsopt = self.conf['columns_option']

        cols = {
            'listnums': {
                'list': 'numbers'
            },
            'mylistnums': {
                'list': 'numbers'
            },
            'rangenums': {
                'range': 'numbers'
            },
            'listnotnums': {
                'list': 'notnumbers'
            },
        }.get(colsopt)
        return MetaData(inports={}, outports={'numlist': cols})
Esempio n. 7
0
    def meta_setup(self):
        df_out_10 = {
            'date': 'date',
            'AAA': 'float64',
            'BBB': 'float64',
            'CCC': 'float64',
            'DDD': 'float64',
            'EEE': 'float64',
            'FFF': 'float64',
            'GGG': 'float64',
            'HHH': 'float64',
            'III': 'float64',
            'JJJ': 'float64',
        }

        df_out_17 = {
            'date': 'date',
            'BZA Index (Equities)': 'float64',
            'CLA Comdty (Commodities)': 'float64',
            'CNA Comdty (Fixed Income)': 'float64',
            'ESA Index (Equities)': 'float64',
            'G A Comdty (Fixed Income)': 'float64',
            'GCA Comdty (Commodities)': 'float64',
            'HIA Index (Equities)': 'float64',
            'NKA Index (Equities)': 'float64',
            'NQA Index (Equities)': 'float64',
            'RXA Comdty (Fixed Income)': 'float64',
            'SIA Comdty (Commodities)': 'float64',
            'SMA Index (Equities)': 'float64',
            'TYA Comdty (Fixed Income)': 'float64',
            'VGA Index (Equities)': 'float64',
            'XMA Comdty (Fixed Income)': 'float64',
            'XPA Index (Equities)': 'float64',
            'Z A Index (Equities)': 'float64',
        }
        assets_17 = self.conf.get('17assets', False)
        columns_out = {}
        columns_out['df_out'] = df_out_17 if assets_17 else df_out_10
        return MetaData(inports={}, outports=columns_out)
Esempio n. 8
0
 def meta_setup(self):
     required ={
         "df1": {},
         "df2": {}
     }
     return MetaData(inports=required, outports={'max_diff': {}})
 def meta_setup(self):
     required = {'inlist': {'list': 'numbers'}}
     columns_out = {'sum': {'element': 'number'}}
     return MetaData(inports=required, outports=columns_out)