def meta_setup(self): req_cols = { 'x': 'float64', 'y': 'float64' } required = { 'points_df_in': req_cols, } input_meta = self.get_input_meta() output_cols = ({ 'distance_df': { 'distance_cudf': 'float64', 'x': 'float64', 'y': 'float64' }, 'distance_abs_df': { 'distance_abs_cudf': 'float64', 'x': 'float64', 'y': 'float64' } }) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['distance_df'].update(col_from_inport) output_cols['distance_abs_df'].update(col_from_inport) return MetaData(inports=required, outports=output_cols)
def meta_setup(self): input_meta = self.get_input_meta() if issubclass(self.instanceClass, TrainableNM): input_meta = self.get_input_meta() if self.INPUT_NM in input_meta: if (share_weight in self.conf and self.conf[share_weight] == 'Reuse'): self.conf = input_meta[self.INPUT_NM] if self.instance is not None: inports = self.instance.input_ports outports = self.instance.output_ports else: try: p_inports = self.instanceClass.input_ports p_outports = self.instanceClass.output_ports feeder = FeedProperty(self.conf) inports = p_inports.fget(feeder) outports = p_outports.fget(feeder) except Exception: inports = None outports = None required = {} out_meta = {} if inports is not None: for k in inports.keys(): required[k] = serialize_type(inports[k]) if outports is not None: for k in outports.keys(): out_meta[k] = serialize_type(outports[k]) if self.instance is not None: out_meta[self.OUTPUT_NM] = self.conf metadata = MetaData(inports=required, outports=out_meta) return metadata
def meta_setup(self): columns_out = { 'points_df_out': { 'x': 'float64', 'y': 'float64' }, } return MetaData(inports={}, outports=columns_out)
def meta_setup(self): required = {} output = {} output['axes'] = [] output['element'] = {} output['element']['types'] = ['VoidType'] output['element']['fields'] = 'None' output['element']['parameters'] = '{}' required = self.get_input_meta() required['input_tensor'] = copy.deepcopy(output) metadata = MetaData(inports=required, outports={self.OUTPUT_PORT_NAME: {}}) return metadata
def meta_setup(self, ): cols_required = {'x': 'float64', 'y': 'float64'} required = { 'points_df_in': cols_required, 'points_ddf_out': cols_required } input_meta = self.get_input_meta() output_cols = ({'points_ddf_out': {'x': 'float64', 'y': 'float64'}}) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['points_ddf_out'].update(col_from_inport) return MetaData(inports=required, outports=output_cols)
def meta_setup(self): colsopt = self.conf['columns_option'] cols = { 'listnums': { 'list': 'numbers' }, 'mylistnums': { 'list': 'numbers' }, 'rangenums': { 'range': 'numbers' }, 'listnotnums': { 'list': 'notnumbers' }, }.get(colsopt) return MetaData(inports={}, outports={'numlist': cols})
def meta_setup(self): df_out_10 = { 'date': 'date', 'AAA': 'float64', 'BBB': 'float64', 'CCC': 'float64', 'DDD': 'float64', 'EEE': 'float64', 'FFF': 'float64', 'GGG': 'float64', 'HHH': 'float64', 'III': 'float64', 'JJJ': 'float64', } df_out_17 = { 'date': 'date', 'BZA Index (Equities)': 'float64', 'CLA Comdty (Commodities)': 'float64', 'CNA Comdty (Fixed Income)': 'float64', 'ESA Index (Equities)': 'float64', 'G A Comdty (Fixed Income)': 'float64', 'GCA Comdty (Commodities)': 'float64', 'HIA Index (Equities)': 'float64', 'NKA Index (Equities)': 'float64', 'NQA Index (Equities)': 'float64', 'RXA Comdty (Fixed Income)': 'float64', 'SIA Comdty (Commodities)': 'float64', 'SMA Index (Equities)': 'float64', 'TYA Comdty (Fixed Income)': 'float64', 'VGA Index (Equities)': 'float64', 'XMA Comdty (Fixed Income)': 'float64', 'XPA Index (Equities)': 'float64', 'Z A Index (Equities)': 'float64', } assets_17 = self.conf.get('17assets', False) columns_out = {} columns_out['df_out'] = df_out_17 if assets_17 else df_out_10 return MetaData(inports={}, outports=columns_out)
def meta_setup(self): required ={ "df1": {}, "df2": {} } return MetaData(inports=required, outports={'max_diff': {}})
def meta_setup(self): required = {'inlist': {'list': 'numbers'}} columns_out = {'sum': {'element': 'number'}} return MetaData(inports=required, outports=columns_out)