def test_becke_transform_3nd_order_ode(self): """Test same result for 3rd order ode with becke tf.""" btf = BeckeTF(0.1, 10) ibtf = InverseTF(btf) coeff = np.array([0, 2, 3, 3]) # transform # r = np.linspace(1, 2, 10) # r # x = ibtf.transform(r) # transformed x x = np.linspace(-0.9, 0.9, 20) r = ibtf.inverse(x) y = np.random.rand(3, r.size) def fx(x): return 1 / x ** 4 def func(x, y): dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx) return np.vstack((*y[1:], dy_dx)) def bc(ya, yb): return np.array([ya[0], yb[0], ya[1]]) res = solve_bvp(func, bc, x, y) # print(res.sol(x)[0]) def func_ref(x, y): dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x)) return np.vstack((*y[1:], dy_dx)) res_ref = solve_bvp(func_ref, bc, r, y) # print(res_ref.sol(r)[0]) assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
def test_poisson_solve_mtr_cmpl(self): """Test solve poisson equation and interpolate the result.""" oned = GaussChebyshev(50) btf = BeckeTF(1e-7, 1.5) rad = btf.transform_1d_grid(oned) l_max = 7 atgrid = AtomGrid(rad, degrees=[l_max]) value_array = self.helper_func_gauss(atgrid.points) p_0 = atgrid.integrate(value_array) # test density sum up to np.pi**(3 / 2) assert_allclose(p_0, np.pi**1.5, atol=1e-4) sph_coor = atgrid.convert_cart_to_sph()[:, 1:3] spls_mt = Poisson._proj_sph_value( atgrid.rgrid, sph_coor, l_max // 2, value_array, atgrid.weights, atgrid.indices, ) ibtf = InverseTF(btf) linsp = np.linspace(-1, 0.99, 50) bound = p_0 * np.sqrt(4 * np.pi) pois_mtr = Poisson.solve_poisson(spls_mt, linsp, bound, tfm=ibtf) assert pois_mtr.shape == (7, 4) near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2]) near_tf_pts = ibtf.transform(near_rg_pts) ref_short_res = [ 6.28286, # 0.01 6.26219, # 0.1 6.20029, # 0.2 6.09956, # 0.3 5.79652, # 0.5 5.3916, # 0.7 4.69236, # 1.0 4.22403, # 1.2 ] for i, j in enumerate(near_tf_pts): assert_almost_equal( Poisson.interpolate_radial(pois_mtr, j, 0, True) / near_rg_pts[i], ref_short_res[i] * np.sqrt(4 * np.pi), decimal=3, ) matrix_result = Poisson.interpolate_radial(pois_mtr, j) assert_almost_equal( matrix_result[0, 0] / near_rg_pts[i], ref_short_res[i] * np.sqrt(4 * np.pi), decimal=3, ) # test interpolate with sph result = Poisson.interpolate(pois_mtr, j, np.random.rand(5), np.random.rand(5)) assert_allclose(result / near_rg_pts[i] - ref_short_res[i], np.zeros(5), atol=1e-3)
def test_becke_transform_f0_ode(self): """Test same result for 3rd order ode with becke tf and fx term.""" btf = BeckeTF(0.1, 10) x = np.linspace(-0.9, 0.9, 20) btf = BeckeTF(0.1, 5) ibtf = InverseTF(btf) r = btf.transform(x) y = np.random.rand(2, x.size) coeff = [-1, -1, 2] def fx(x): return -1 / x ** 2 def func(x, y): dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx) return np.vstack((*y[1:], dy_dx)) def bc(ya, yb): return np.array([ya[0], yb[0]]) res = solve_bvp(func, bc, x, y) def func_ref(x, y): dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x)) return np.vstack((*y[1:], dy_dx)) res_ref = solve_bvp(func_ref, bc, r, y) assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
def test_linear_inverse(self): """Test inverse transform and derivs function.""" ltf = LinearTF(0.1, 10) iltf = InverseTF(ltf) # transform & inverse self._transform_and_inverse(0, 20, iltf) # finite diff for derivs self._deriv_finite_diff(0, 20, iltf)
def test_transform_coeff(self): """Test coefficient transform with r.""" # d^2y / dx^2 = 1 itf = IdentityRTransform() inv_tf = InverseTF(itf) derivs_fun = [inv_tf.deriv, inv_tf.deriv2, inv_tf.deriv3] coeff = np.array([0, 0, 1]) x = np.linspace(0, 1, 10) coeff_b = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, x) # compute transformed coeffs assert_allclose(coeff_b, np.zeros((3, 10), dtype=float) + coeff[:, None])
def test_linear_transform_coeff(self): """Test coefficient with linear transformation.""" x = GaussLaguerre(10).points ltf = LinearTF(1, 10) inv_ltf = InverseTF(ltf) derivs_fun = [inv_ltf.deriv, inv_ltf.deriv2, inv_ltf.deriv3] coeff = np.array([2, 3, 4]) coeff_b = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, x) # assert values assert_allclose(coeff_b[0], np.ones(len(x)) * coeff[0]) assert_allclose(coeff_b[1], 1 / 4.5 * coeff[1]) assert_allclose(coeff_b[2], (1 / 4.5) ** 2 * coeff[2])
def test_transform_coeff_with_x_and_r(self): """Test coefficient transform between x and r.""" coeff = np.array([2, 3, 4]) ltf = LinearTF(1, 10) # (-1, 1) -> (r0, rmax) inv_tf = InverseTF(ltf) # (r0, rmax) -> (-1, 1) x = np.linspace(-1, 1, 20) r = ltf.transform(x) assert r[0] == 1 assert r[-1] == 10 coeff_b = ODE._transformed_coeff_ode(coeff, inv_tf, x) derivs_fun = [inv_tf.deriv, inv_tf.deriv2, inv_tf.deriv3] coeff_b_ref = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, r) assert_allclose(coeff_b, coeff_b_ref)
def test_solver_ode_coeff_a_f_x_with_tf(self): """Test ode with a(x) and f(x) involved.""" x = np.linspace(-0.999, 0.999, 20) btf = BeckeTF(0.1, 5) r = btf.transform(x) ibtf = InverseTF(btf) def fx(x): return 0 * x coeffs = [lambda x: x ** 2, lambda x: 1 / x ** 2, 0.5] bd_cond = [(0, 0, 0), (1, 0, 0)] # calculate diff equation wt/w tf. res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf) res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond) assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
def test_solver_ode_bvp_with_tf(self): """Test result for high level api solve_ode with fx term.""" x = np.linspace(-0.999, 0.999, 20) btf = BeckeTF(0.1, 5) r = btf.transform(x) ibtf = InverseTF(btf) def fx(x): return 1 / x ** 2 coeffs = [-1, 1, 1] bd_cond = [(0, 0, 0), (1, 0, 0)] # calculate diff equation wt/w tf. res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf) res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond) assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
def test_errors_assert(self): """Test errors raise.""" # parameter error with self.assertRaises(ValueError): BeckeTF.find_parameter(np.arange(5), 0.5, 0.1) # transform non array type with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform(0.5) # inverse init error with self.assertRaises(TypeError): InverseTF(0.5) # type error for transform_grid with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform_grid(np.arange(3))
def test_errors_assert(self): """Test errors raise.""" # parameter error with self.assertRaises(ValueError): BeckeTF.find_parameter(np.arange(5), 0.5, 0.1) # transform non array type with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform("dafasdf") # inverse init error with self.assertRaises(TypeError): InverseTF(0.5) # type error for transform_1d_grid with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform_1d_grid(np.arange(3)) with self.assertRaises(ZeroDivisionError): btf = BeckeTF(0.1, 0) itf = InverseTF(btf) itf._d1(0.5) with self.assertRaises(ZeroDivisionError): btf = BeckeTF(0.1, 0) itf = InverseTF(btf) itf._d1(np.array([0.1, 0.2, 0.3]))
def test_handymod_inverse(self): """Test inverse transform basic function.""" btf = HandyModTF(0.1, 10.0, 2) inv = InverseTF(btf) new_array = inv.transform(btf.transform(self.array)) assert_allclose(new_array, self.array)
def test_multiexp_inverse(self): """Test inverse transform basic function.""" btf = MultiExpTF(0.1, 1.1) inv = InverseTF(btf) new_array = inv.transform(btf.transform(self.array)) assert_allclose(new_array, self.array)
def test_becke_inverse_inverse(self): """Test inverse of inverse of Becke transformation.""" btf = BeckeTF(0.1, 1.1) inv = InverseTF(btf) inv_inv = inv.inverse(inv.transform(self.array)) assert_allclose(inv_inv, self.array, atol=1e-7)
def test_becke_inverse_deriv(self): """Test inverse transformation derivatives with finite diff.""" btf = BeckeTF(0.1, 1.1) inv = InverseTF(btf) self._deriv_finite_diff(0, 20, inv)
def test_poisson_solve(self): """Test the poisson solve function.""" oned = GaussChebyshev(30) oned = GaussChebyshev(50) btf = BeckeTF(1e-7, 1.5) rad = btf.transform_1d_grid(oned) l_max = 7 atgrid = AtomGrid(rad, degrees=[l_max]) value_array = self.helper_func_gauss(atgrid.points) p_0 = atgrid.integrate(value_array) # test density sum up to np.pi**(3 / 2) assert_allclose(p_0, np.pi**1.5, atol=1e-4) sph_coor = atgrid.convert_cart_to_sph()[:, 1:3] spls_mt = Poisson._proj_sph_value( atgrid.rgrid, sph_coor, l_max // 2, value_array, atgrid.weights, atgrid.indices, ) # test splines project fit gauss function well def gauss(r): return np.exp(-(r**2)) for _ in range(20): coors = np.random.rand(10, 3) r = np.linalg.norm(coors, axis=-1) spl_0_0 = spls_mt[0, 0] interp_v = spl_0_0(r) ref_v = gauss(r) * np.sqrt(4 * np.pi) # 0.28209479 is the value in spherical harmonic Z_0_0 assert_allclose(interp_v, ref_v, atol=1e-3) ibtf = InverseTF(btf) linsp = np.linspace(-1, 0.99, 50) bound = p_0 * np.sqrt(4 * np.pi) res_bv = Poisson.solve_poisson_bv(spls_mt[0, 0], linsp, bound, tfm=ibtf) near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2]) near_tf_pts = ibtf.transform(near_rg_pts) long_rg_pts = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10]) long_tf_pts = ibtf.transform(long_rg_pts) short_res = res_bv(near_tf_pts)[0] / near_rg_pts / (2 * np.sqrt(np.pi)) long_res = res_bv(long_tf_pts)[0] / long_rg_pts / (2 * np.sqrt(np.pi)) # ref are calculated with mathemetical # integrate[exp[-x^2 - y^2 - z^2] / sqrt[(x - a)^2 + y^2 +z^2], range] ref_short_res = [ 6.28286, # 0.01 6.26219, # 0.1 6.20029, # 0.2 6.09956, # 0.3 5.79652, # 0.5 5.3916, # 0.7 4.69236, # 1.0 4.22403, # 1.2 ] ref_long_res = [ 2.77108, # 2 1.85601, # 3 1.39203, # 4 1.11362, # 5 0.92802, # 6 0.79544, # 7 0.69601, # 8 0.61867, # 9 0.55680, # 10 ] assert_allclose(short_res, ref_short_res, atol=5e-4) assert_allclose(long_res, ref_long_res, atol=5e-4) # solve same poisson equation with gauss directly gauss_pts = btf.transform(linsp) res_gs = Poisson.solve_poisson_bv(gauss, gauss_pts, p_0) gs_int_short = res_gs(near_rg_pts)[0] / near_rg_pts gs_int_long = res_gs(long_rg_pts)[0] / long_rg_pts assert_allclose(gs_int_short, ref_short_res, 5e-4) assert_allclose(gs_int_long, ref_long_res, 5e-4)
def test_knowles_inverse(self): """Test inverse transform basic function.""" btf = KnowlesTF(0.1, 1.1, 2) inv = InverseTF(btf) new_array = inv.transform(btf.transform(self.array)) assert_allclose(new_array, self.array)
def test_becke_inverse_deriv(self): """Test inverse transformation derivatives with finite diff.""" btf = BeckeTF(0.1, 1.1) inv = InverseTF(btf) r_array = 2**(np.arange(-1, 8, dtype=float)) self._deriv_finite_diff(inv, r_array)