Esempio n. 1
0
    def test_becke_transform_3nd_order_ode(self):
        """Test same result for 3rd order ode with becke tf."""
        btf = BeckeTF(0.1, 10)
        ibtf = InverseTF(btf)
        coeff = np.array([0, 2, 3, 3])
        # transform
        # r = np.linspace(1, 2, 10)  # r
        # x = ibtf.transform(r)  # transformed x
        x = np.linspace(-0.9, 0.9, 20)
        r = ibtf.inverse(x)
        y = np.random.rand(3, r.size)

        def fx(x):
            return 1 / x ** 4

        def func(x, y):
            dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx)
            return np.vstack((*y[1:], dy_dx))

        def bc(ya, yb):
            return np.array([ya[0], yb[0], ya[1]])

        res = solve_bvp(func, bc, x, y)
        # print(res.sol(x)[0])

        def func_ref(x, y):
            dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x))
            return np.vstack((*y[1:], dy_dx))

        res_ref = solve_bvp(func_ref, bc, r, y)
        # print(res_ref.sol(r)[0])
        assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
Esempio n. 2
0
    def test_poisson_solve_mtr_cmpl(self):
        """Test solve poisson equation and interpolate the result."""
        oned = GaussChebyshev(50)
        btf = BeckeTF(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()[:, 1:3]
        spls_mt = Poisson._proj_sph_value(
            atgrid.rgrid,
            sph_coor,
            l_max // 2,
            value_array,
            atgrid.weights,
            atgrid.indices,
        )
        ibtf = InverseTF(btf)
        linsp = np.linspace(-1, 0.99, 50)
        bound = p_0 * np.sqrt(4 * np.pi)
        pois_mtr = Poisson.solve_poisson(spls_mt, linsp, bound, tfm=ibtf)
        assert pois_mtr.shape == (7, 4)
        near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2])
        near_tf_pts = ibtf.transform(near_rg_pts)
        ref_short_res = [
            6.28286,  # 0.01
            6.26219,  # 0.1
            6.20029,  # 0.2
            6.09956,  # 0.3
            5.79652,  # 0.5
            5.3916,  # 0.7
            4.69236,  # 1.0
            4.22403,  # 1.2
        ]
        for i, j in enumerate(near_tf_pts):
            assert_almost_equal(
                Poisson.interpolate_radial(pois_mtr, j, 0, True) /
                near_rg_pts[i],
                ref_short_res[i] * np.sqrt(4 * np.pi),
                decimal=3,
            )
            matrix_result = Poisson.interpolate_radial(pois_mtr, j)
            assert_almost_equal(
                matrix_result[0, 0] / near_rg_pts[i],
                ref_short_res[i] * np.sqrt(4 * np.pi),
                decimal=3,
            )
            # test interpolate with sph
            result = Poisson.interpolate(pois_mtr, j, np.random.rand(5),
                                         np.random.rand(5))
            assert_allclose(result / near_rg_pts[i] - ref_short_res[i],
                            np.zeros(5),
                            atol=1e-3)
Esempio n. 3
0
    def test_becke_transform_f0_ode(self):
        """Test same result for 3rd order ode with becke tf and fx term."""
        btf = BeckeTF(0.1, 10)
        x = np.linspace(-0.9, 0.9, 20)
        btf = BeckeTF(0.1, 5)
        ibtf = InverseTF(btf)
        r = btf.transform(x)
        y = np.random.rand(2, x.size)
        coeff = [-1, -1, 2]

        def fx(x):
            return -1 / x ** 2

        def func(x, y):
            dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx)
            return np.vstack((*y[1:], dy_dx))

        def bc(ya, yb):
            return np.array([ya[0], yb[0]])

        res = solve_bvp(func, bc, x, y)

        def func_ref(x, y):
            dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x))
            return np.vstack((*y[1:], dy_dx))

        res_ref = solve_bvp(func_ref, bc, r, y)
        assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
Esempio n. 4
0
 def test_linear_inverse(self):
     """Test inverse transform and derivs function."""
     ltf = LinearTF(0.1, 10)
     iltf = InverseTF(ltf)
     # transform & inverse
     self._transform_and_inverse(0, 20, iltf)
     # finite diff for derivs
     self._deriv_finite_diff(0, 20, iltf)
Esempio n. 5
0
 def test_transform_coeff(self):
     """Test coefficient transform with r."""
     # d^2y / dx^2 = 1
     itf = IdentityRTransform()
     inv_tf = InverseTF(itf)
     derivs_fun = [inv_tf.deriv, inv_tf.deriv2, inv_tf.deriv3]
     coeff = np.array([0, 0, 1])
     x = np.linspace(0, 1, 10)
     coeff_b = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, x)
     # compute transformed coeffs
     assert_allclose(coeff_b, np.zeros((3, 10), dtype=float) + coeff[:, None])
Esempio n. 6
0
 def test_linear_transform_coeff(self):
     """Test coefficient with linear transformation."""
     x = GaussLaguerre(10).points
     ltf = LinearTF(1, 10)
     inv_ltf = InverseTF(ltf)
     derivs_fun = [inv_ltf.deriv, inv_ltf.deriv2, inv_ltf.deriv3]
     coeff = np.array([2, 3, 4])
     coeff_b = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, x)
     # assert values
     assert_allclose(coeff_b[0], np.ones(len(x)) * coeff[0])
     assert_allclose(coeff_b[1], 1 / 4.5 * coeff[1])
     assert_allclose(coeff_b[2], (1 / 4.5) ** 2 * coeff[2])
Esempio n. 7
0
 def test_transform_coeff_with_x_and_r(self):
     """Test coefficient transform between x and r."""
     coeff = np.array([2, 3, 4])
     ltf = LinearTF(1, 10)  # (-1, 1) -> (r0, rmax)
     inv_tf = InverseTF(ltf)  # (r0, rmax) -> (-1, 1)
     x = np.linspace(-1, 1, 20)
     r = ltf.transform(x)
     assert r[0] == 1
     assert r[-1] == 10
     coeff_b = ODE._transformed_coeff_ode(coeff, inv_tf, x)
     derivs_fun = [inv_tf.deriv, inv_tf.deriv2, inv_tf.deriv3]
     coeff_b_ref = ODE._transformed_coeff_ode_with_r(coeff, derivs_fun, r)
     assert_allclose(coeff_b, coeff_b_ref)
Esempio n. 8
0
    def test_solver_ode_coeff_a_f_x_with_tf(self):
        """Test ode with a(x) and f(x) involved."""
        x = np.linspace(-0.999, 0.999, 20)
        btf = BeckeTF(0.1, 5)
        r = btf.transform(x)
        ibtf = InverseTF(btf)

        def fx(x):
            return 0 * x

        coeffs = [lambda x: x ** 2, lambda x: 1 / x ** 2, 0.5]
        bd_cond = [(0, 0, 0), (1, 0, 0)]
        # calculate diff equation wt/w tf.
        res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf)
        res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond)
        assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
Esempio n. 9
0
    def test_solver_ode_bvp_with_tf(self):
        """Test result for high level api solve_ode with fx term."""
        x = np.linspace(-0.999, 0.999, 20)
        btf = BeckeTF(0.1, 5)
        r = btf.transform(x)
        ibtf = InverseTF(btf)

        def fx(x):
            return 1 / x ** 2

        coeffs = [-1, 1, 1]
        bd_cond = [(0, 0, 0), (1, 0, 0)]
        # calculate diff equation wt/w tf.
        res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf)
        res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond)
        assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
Esempio n. 10
0
 def test_errors_assert(self):
     """Test errors raise."""
     # parameter error
     with self.assertRaises(ValueError):
         BeckeTF.find_parameter(np.arange(5), 0.5, 0.1)
     # transform non array type
     with self.assertRaises(TypeError):
         btf = BeckeTF(0.1, 1.1)
         btf.transform(0.5)
     # inverse init error
     with self.assertRaises(TypeError):
         InverseTF(0.5)
     # type error for transform_grid
     with self.assertRaises(TypeError):
         btf = BeckeTF(0.1, 1.1)
         btf.transform_grid(np.arange(3))
Esempio n. 11
0
 def test_errors_assert(self):
     """Test errors raise."""
     # parameter error
     with self.assertRaises(ValueError):
         BeckeTF.find_parameter(np.arange(5), 0.5, 0.1)
     # transform non array type
     with self.assertRaises(TypeError):
         btf = BeckeTF(0.1, 1.1)
         btf.transform("dafasdf")
     # inverse init error
     with self.assertRaises(TypeError):
         InverseTF(0.5)
     # type error for transform_1d_grid
     with self.assertRaises(TypeError):
         btf = BeckeTF(0.1, 1.1)
         btf.transform_1d_grid(np.arange(3))
     with self.assertRaises(ZeroDivisionError):
         btf = BeckeTF(0.1, 0)
         itf = InverseTF(btf)
         itf._d1(0.5)
     with self.assertRaises(ZeroDivisionError):
         btf = BeckeTF(0.1, 0)
         itf = InverseTF(btf)
         itf._d1(np.array([0.1, 0.2, 0.3]))
Esempio n. 12
0
 def test_handymod_inverse(self):
     """Test inverse transform basic function."""
     btf = HandyModTF(0.1, 10.0, 2)
     inv = InverseTF(btf)
     new_array = inv.transform(btf.transform(self.array))
     assert_allclose(new_array, self.array)
Esempio n. 13
0
 def test_multiexp_inverse(self):
     """Test inverse transform basic function."""
     btf = MultiExpTF(0.1, 1.1)
     inv = InverseTF(btf)
     new_array = inv.transform(btf.transform(self.array))
     assert_allclose(new_array, self.array)
Esempio n. 14
0
 def test_becke_inverse_inverse(self):
     """Test inverse of inverse of Becke transformation."""
     btf = BeckeTF(0.1, 1.1)
     inv = InverseTF(btf)
     inv_inv = inv.inverse(inv.transform(self.array))
     assert_allclose(inv_inv, self.array, atol=1e-7)
Esempio n. 15
0
 def test_becke_inverse_deriv(self):
     """Test inverse transformation derivatives with finite diff."""
     btf = BeckeTF(0.1, 1.1)
     inv = InverseTF(btf)
     self._deriv_finite_diff(0, 20, inv)
Esempio n. 16
0
    def test_poisson_solve(self):
        """Test the poisson solve function."""
        oned = GaussChebyshev(30)
        oned = GaussChebyshev(50)
        btf = BeckeTF(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()[:, 1:3]
        spls_mt = Poisson._proj_sph_value(
            atgrid.rgrid,
            sph_coor,
            l_max // 2,
            value_array,
            atgrid.weights,
            atgrid.indices,
        )

        # test splines project fit gauss function well

        def gauss(r):
            return np.exp(-(r**2))

        for _ in range(20):
            coors = np.random.rand(10, 3)
            r = np.linalg.norm(coors, axis=-1)
            spl_0_0 = spls_mt[0, 0]
            interp_v = spl_0_0(r)
            ref_v = gauss(r) * np.sqrt(4 * np.pi)
            # 0.28209479 is the value in spherical harmonic Z_0_0
            assert_allclose(interp_v, ref_v, atol=1e-3)
        ibtf = InverseTF(btf)
        linsp = np.linspace(-1, 0.99, 50)
        bound = p_0 * np.sqrt(4 * np.pi)
        res_bv = Poisson.solve_poisson_bv(spls_mt[0, 0],
                                          linsp,
                                          bound,
                                          tfm=ibtf)

        near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2])
        near_tf_pts = ibtf.transform(near_rg_pts)
        long_rg_pts = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])
        long_tf_pts = ibtf.transform(long_rg_pts)
        short_res = res_bv(near_tf_pts)[0] / near_rg_pts / (2 * np.sqrt(np.pi))
        long_res = res_bv(long_tf_pts)[0] / long_rg_pts / (2 * np.sqrt(np.pi))
        # ref are calculated with mathemetical
        # integrate[exp[-x^2 - y^2 - z^2] / sqrt[(x - a)^2 + y^2 +z^2], range]
        ref_short_res = [
            6.28286,  # 0.01
            6.26219,  # 0.1
            6.20029,  # 0.2
            6.09956,  # 0.3
            5.79652,  # 0.5
            5.3916,  # 0.7
            4.69236,  # 1.0
            4.22403,  # 1.2
        ]
        ref_long_res = [
            2.77108,  # 2
            1.85601,  # 3
            1.39203,  # 4
            1.11362,  # 5
            0.92802,  # 6
            0.79544,  # 7
            0.69601,  # 8
            0.61867,  # 9
            0.55680,  # 10
        ]
        assert_allclose(short_res, ref_short_res, atol=5e-4)
        assert_allclose(long_res, ref_long_res, atol=5e-4)
        # solve same poisson equation with gauss directly
        gauss_pts = btf.transform(linsp)
        res_gs = Poisson.solve_poisson_bv(gauss, gauss_pts, p_0)
        gs_int_short = res_gs(near_rg_pts)[0] / near_rg_pts
        gs_int_long = res_gs(long_rg_pts)[0] / long_rg_pts
        assert_allclose(gs_int_short, ref_short_res, 5e-4)
        assert_allclose(gs_int_long, ref_long_res, 5e-4)
Esempio n. 17
0
 def test_knowles_inverse(self):
     """Test inverse transform basic function."""
     btf = KnowlesTF(0.1, 1.1, 2)
     inv = InverseTF(btf)
     new_array = inv.transform(btf.transform(self.array))
     assert_allclose(new_array, self.array)
Esempio n. 18
0
 def test_becke_inverse_deriv(self):
     """Test inverse transformation derivatives with finite diff."""
     btf = BeckeTF(0.1, 1.1)
     inv = InverseTF(btf)
     r_array = 2**(np.arange(-1, 8, dtype=float))
     self._deriv_finite_diff(inv, r_array)