Esempio n. 1
0
import numpy

filename = '../data/synthetic_ltm/ltm'
if 1: 
    import gru_5_2 as gru
    print "RUNNING CTGRU 5.2"
    tr,va,te = gru.train_model(encoder='ctgru',
                        show_weights=False,
                        arch_ctgru_ohat_for_sscale=False, # DEBUG
                        arch_ctgru_include_priors=False, # DEBUG
                        timescales=10**numpy.arange(0,3.0,.5),
                        valid_portion=.15,
                        valid_freq=1,
                        maxlen=1000,
                        patience=15, 
                        n_hid=30, # WAS 15,
                        data_file=filename,
                        saveto='weights/ctgru_synthetic_ltm.npz',
                        arch_output_fn='logistic')

if 1: 
    import gru_5_2 as gru
    print "RUNNING GRU WITH DELTA T"
    tr,va,te = gru.train_model(encoder='gru',
                        show_weights=False,
                        arch_gru_include_delta_t=True,
                        valid_portion=.15,
                        valid_freq=1,
                        maxlen=1000,
                        patience=15, 
                        n_hid=30, # WAS 15,
Esempio n. 2
0
                                 data_file=filename,
                                 saveto='weights/spm_model_true.npz',
                                 arch_output_fn='softmax')
    print(1 - te)

if 0:
    import gru_5_2 as gru
    for h in [50]:
        print "RUNNING GRU WITH ", h, " HID"
        te, tll, tauc = gru.train_model(encoder='gru',
                                        show_weights=False,
                                        arch_ctgru_ohat_for_sscale=False,
                                        arch_ctgru_include_priors=False,
                                        arch_gru_include_delta_t=True,
                                        valid_portion=.15,
                                        valid_freq=1,
                                        maxlen=1000,
                                        patience=25,
                                        n_hid=h,
                                        data_file=filename,
                                        saveto='weights/gru_lastfm.npz',
                                        arch_output_fn='softmax')
        print('acc ', 1 - te, ' logL ', tll, ' auc ', tauc)

if 1:
    import gru_5_2 as gru
    for h in [50]:
        print "RUNNING CTGRU WITH ", h, " HID"
        te, tll, tauc = gru.train_model(
            encoder='ctgru',
            show_weights=False,
Esempio n. 3
0
                    n_hid=50,
                    data_file=filename,
                    saveto='weights/spm_model.npz',
                    arch_output_fn='softmax')


if 1: # RUN CTGRU 
    import gru_5_2 as gru 
    print "RUNNING CTGRU 5.2"
    tr, va, te = gru.train_model(encoder='ctgru',
                    arch_ctgru_ohat_for_sscale=False, ###########
                    arch_ctgru_include_priors=False,  ###########
                    #arch_ctgru_include_delta_t=False, ###########
                    timescales=10.0**numpy.arange(-2.1,2.6,.5),
                    valid_portion=.15,
                    valid_freq=1,
                    maxlen=1000,
                    patience=25,
                    n_hid=50,
                    data_file=filename,
                    saveto='weights/ctgru_reddit_model.npz',
                    arch_output_fn='softmax')

if 0:
    import gru_5_2 as gru 
    print "RUNNING GRU 5.2"
    tr, va, te = gru.train_model(encoder='gru',
                    arch_gru_include_delta_t=True,
                    valid_portion=.15,
                    valid_freq=1,
                    maxlen=1000,
Esempio n. 4
0
                                    valid_portion=.15,
                                    saveto='weights/spm_msnbc.npz',
                                    arch_output_fn='softmax')

if 1:
    import gru_5_2 as gru
    for h in [50]:  # [25, 50]:
        print "RUNNING GRU WITH ", h, " HID"
        te, tll, tauc = gru.train_model(
            encoder='gru',
            show_weights=False,
            arch_ctgru_ohat_for_sscale=False,
            arch_ctgru_include_priors=False,
            arch_gru_include_delta_t=False,  # no need for msnbc
            timescales=10**numpy.arange(0.0, 2.5, .5),
            valid_portion=.15,
            valid_freq=1,
            maxlen=1000,
            patience=25,
            n_hid=h,
            data_file='../data/msnbc/msnbc',
            saveto='weights/gru_msnbc.npz',
            arch_output_fn='softmax')
        print('acc ', 1 - te, ' logL ', tll, ' auc ', tauc)

if 0:
    import gru_5_2 as gru
    for h in [25, 50]:
        print "RUNNING CTGRU WITH ", h, " HID"
        te, tll, tauc = gru.train_model(
            encoder='ctgru',