def __init__(self, problem_idx):
        Mover.__init__(self, problem_idx)
        self.operator_names = ['one_arm_pick', 'one_arm_place']
        set_robot_config([4.19855789, 2.3236321, 5.2933337], self.robot)
        set_obj_xytheta([3.35744004, 2.19644156, 3.52741118], self.objects[1])
        self.boxes = self.objects
        self.objects = self.problem_config['shelf_objects']
        self.objects = [k for v in self.objects.values() for k in v]
        self.objects[0], self.objects[1] = self.objects[1], self.objects[0]

        self.target_box = self.env.GetKinBody('rectangular_packing_box1')
        utils.randomly_place_region(self.target_box, self.regions['home_region'])
        self.regions['rectangular_packing_box1_region'] = self.compute_box_region(self.target_box)
        self.shelf_regions = self.problem_config['shelf_regions']
        self.target_box_region = self.regions['rectangular_packing_box1_region']
        self.regions.update(self.shelf_regions)
        self.entity_names = [obj.GetName() for obj in self.objects] + ['rectangular_packing_box1_region',
                                                                       'center_shelf_region']
        self.name = 'one_arm_mover'
        self.init_saver = utils.CustomStateSaver(self.env)

        self.object_names = self.entity_names

        # fix incorrectly named regions
        self.regions = {
            region.name: region
            for region in self.regions.values()
        }
def compute_clf_rates_from_diff_pinstances(problem_env, key_configs, net,
                                           action_type):
    clf_rates = []
    for problem_seed in range(400):
        np.random.seed(problem_seed)
        random.seed(problem_seed)
        [
            utils.randomly_place_region(obj,
                                        problem_env.regions['loading_region'])
            for obj in problem_env.objects
        ]
        utils.randomly_place_region(problem_env.robot,
                                    problem_env.regions['loading_region'])
        if action_type == 'place':
            sampler = UniformSampler(problem_env.regions['home_region'])
            checker = TwoArmPaPFeasibilityCheckerWithoutSavingFeasiblePick(
                problem_env)
            status = "NoSolution"
            while status != "HasSolution":
                pick_param = sampler.sample()
                target_obj = problem_env.objects[np.random.randint(8)]
                abstract_action = Operator(
                    operator_type='two_arm_pick_two_arm_place',
                    discrete_parameters={
                        'object': target_obj,
                        'place_region': 'home_region'
                    })
                op_parameters, status = checker.check_feasibility(
                    abstract_action, pick_param)
            utils.two_arm_pick_object(target_obj, op_parameters['pick'])
            region_name = 'loading_region'
        else:
            region_name = 'loading_region'

        clf_rate = get_clf_accuracy(problem_env, key_configs, net, region_name)
        if action_type == 'place':
            utils.two_arm_place_object(op_parameters['pick'])
        clf_rates.append(clf_rate)
        # print "pidx %d Clf rate %.2f " % (problem_seed, clf_rate)
        print np.array(clf_rates).sum(axis=0), problem_seed
Esempio n. 3
0
    def set_goal(self, goal_objects, goal_region):
        self.goal_objects = goal_objects
        [utils.set_color(o, [1, 0, 0]) for o in self.goal_objects]
        if 40000 <= self.problem_idx < 50000:
            entrance_region = AARegion('entrance', ((0.25, 1.33), (-6, -5.0)), z=0.135, color=np.array((1, 1, 0, 0.25)))
            non_entrance_region = AARegion('non_entrance_region', ((1.5, 4.25), (-8.49, -5.01)), z=0.135,
                                           color=np.array((1, 1, 0, 0.25)))
            # move objects out of the entrance region
            utils.randomly_place_region(self.robot, non_entrance_region)
            [utils.randomly_place_region(obj, non_entrance_region) for obj in self.objects]

            # try to put three objs near the entrance
            objs_to_move_near_entrance = [obj for obj in self.objects if obj.GetName() not in goal_objects][0:1]
            for obj in objs_to_move_near_entrance:
                utils.randomly_place_region(obj, entrance_region, n_limit=100)

            region_around_entrance_region = AARegion('region_around', ((-0.25, 1.7), (-6.6, -5.0)), z=0.135,
                                                     color=np.array((1, 1, 0, 0.25)))

            object_around_entrance = [obj for obj in self.objects if obj not in objs_to_move_near_entrance and obj.GetName() not in goal_objects][0:3]
            for obj in object_around_entrance: utils.randomly_place_region(obj, region_around_entrance_region,
                                                                           n_limit=100)

            # surround the robot?
            # Force the goal object to be around the robot
            #utils.randomly_place_region(self.robot, robot_region)
            radius = 1
            center = utils.get_body_xytheta(self.robot).squeeze()[0:2]
            xmin = center[0] - radius
            xmax = center[0]
            ymin = center[1]
            ymax = center[1] + radius
            goal_obj_region = AARegion('goal_obj_region', ((xmin, xmax), (ymin, ymax)), z=0.135,
                                    color=np.array((1, 1, 0, 0.25)))

            # doing the below because we ran n_objs_pack=1 and n_objs_pack=4 on different commits
            if len(goal_objects) == 4:
                for obj in goal_objects[0:1]:
                    utils.randomly_place_region(self.env.GetKinBody(obj), goal_obj_region, n_limit=100)
            else:
                for obj in goal_objects:
                    utils.randomly_place_region(self.env.GetKinBody(obj), goal_obj_region, n_limit=100)

        elif 50000 <= self.problem_idx < 60000:
            # hard problems for both RSC and Greedy
            # hard for RSC: make sure the goal object needs to be moved twice
            # dillema: if I put the goal object near the entrance, then I can just move that to the goal region
            # I must surround the robot with the goal object such that the shortest path always go
            # through the goal object
            # another option is to block the object in the entrance region with the goal object
            entrance_region = AARegion('entrance', ((0.25, 1.33), (-6, -5.0)), z=0.135, color=np.array((1, 1, 0, 0.25)))
            non_entrance_region = AARegion('non_entrance_region',
                                           # xmin,xmax    ymin, ymax
                                           ((1.5, 4.25), (-8.49, -5.01)), z=0.135,
                                           color=np.array((1, 1, 0, 0.25)))
            # move objects out of the entrance region
            utils.randomly_place_region(self.robot, non_entrance_region)
            [utils.randomly_place_region(obj, non_entrance_region) for obj in self.objects]

            # try to put three objs near the entrance
            objs_to_move_near_entrance = [obj for obj in self.objects if obj.GetName() not in goal_objects][0:1]
            for obj in objs_to_move_near_entrance:
                utils.randomly_place_region(obj, entrance_region, n_limit=100)

            region_around_entrance_region = AARegion('region_around', ((-0.25, 1.7), (-6.6, -5.0)), z=0.135,
                                                     color=np.array((1, 1, 0, 0.25)))

            object_around_entrance = [obj for obj in self.objects if obj not in objs_to_move_near_entrance
                                      if obj.GetName() not in goal_objects][0:3]
            # object_around_entrance = np.array(object_around_entrance)[
            #    np.random.choice(range(len(object_around_entrance)), 3, replace=False)]
            for obj in object_around_entrance: utils.randomly_place_region(obj, region_around_entrance_region,
                                                                           n_limit=100)

            # xmin,xmax    ymin, ymax
            robot_region = AARegion('robot_region', ((3.0, 4.29), (-8.0, -6.0)), z=0.135,
                                    color=np.array((1, 1, 0, 0.25)))
            utils.randomly_place_region(self.robot, robot_region)

            [utils.randomly_place_region(obj, non_entrance_region) for obj in self.objects
             if obj not in object_around_entrance + objs_to_move_near_entrance]

            # surround the robot?
            # Force the goal object to be around the robot
            utils.randomly_place_region(self.robot, robot_region)
            radius = 1
            center = utils.get_body_xytheta(self.robot).squeeze()[0:2]
            xmin = center[0] - radius
            xmax = center[0] + radius
            ymin = center[1] - radius
            ymax = center[1] + radius
            goal_obj_region = AARegion('goal_obj_region', ((xmin, xmax), (ymin, ymax)), z=0.135,
                                       color=np.array((1, 1, 0, 0.25)))
            for obj in goal_objects:
                utils.randomly_place_region(self.env.GetKinBody(obj), goal_obj_region)
        elif self.problem_idx >= 60000:
            entrance_region = AARegion('entrance', ((0.25, 1.33), (-6, -5.0)), z=0.135, color=np.array((1, 1, 0, 0.25)))
            non_entrance_region = AARegion('non_entrance_region', ((1.5, 4.25), (-8.49, -5.01)), z=0.135,
                                           color=np.array((1, 1, 0, 0.25)))
            # move objects out of the entrance region
            utils.randomly_place_region(self.robot, non_entrance_region)
            [utils.randomly_place_region(obj, non_entrance_region) for obj in self.objects]

            # try to put three objs near the entrance
            objs_to_move_near_entrance = [obj for obj in self.objects if obj.GetName() not in goal_objects][0:1]
            for obj in objs_to_move_near_entrance:
                utils.randomly_place_region(obj, entrance_region, n_limit=100)

            region_around_entrance_region = AARegion('region_around', ((-0.25, 1.7), (-6.6, -5.0)), z=0.135,
                                                     color=np.array((1, 1, 0, 0.25)))

            object_around_entrance = [obj for obj in self.objects if obj not in objs_to_move_near_entrance][0:3]
            for obj in object_around_entrance: utils.randomly_place_region(obj, region_around_entrance_region,
                                                                           n_limit=100)

        self.initial_robot_base_pose = get_body_xytheta(self.robot)
        self.object_init_poses = {o.GetName(): get_body_xytheta(o).squeeze() for o in self.objects}
        self.init_saver = CustomStateSaver(self.env)

        self.goal_region = goal_region
        self.goal_entities = self.goal_objects + [self.goal_region]
Esempio n. 4
0
def put_obj_out_of_region(body, region):
    while region.contains(body.ComputeAABB()):
        utils.randomly_place_region(body, region)