Esempio n. 1
0
def pipeline1(images):
    """
    Binarizer --> Height Filtration, Erosion Filtration, Dilation Filtration --> Cubical Persistance --> Amp, PE
    return: Array of pipelines
    """
    # Pipeline parameters
    bin_thresholds = [np.percentile(images[0], 93) / np.max(images[0])]
    directions = [
        np.array([np.cos(t), np.sin(t)])
        for t in np.linspace(0, 2 * np.pi, 8)[:-1]
    ]
    n_iterations = np.linspace(1, 21, 5).astype(int).tolist()

    features = [('bottleneck', Amplitude(metric='bottleneck', n_jobs=-1)),
                ('PE', PersistenceEntropy(n_jobs=-1))]

    # Make filtrations
    binned_steps = [('binarizer_{}'.format(t), Binarizer(threshold=t,
                                                         n_jobs=-1))
                    for t in bin_thresholds]
    filtrations = [('height_{}'.format(d),
                    HeightFiltration(direction=d, n_jobs=-1))
                   for d in directions]
    filtrations += [('erosion_{}'.format(i),
                     ErosionFiltration(n_iterations=i, n_jobs=-1))
                    for i in n_iterations]
    filtrations += [('dilation_{}'.format(i),
                     DilationFiltration(n_iterations=i, n_jobs=-1))
                    for i in n_iterations]

    # Make pipelines
    cubical_lower = ('cubical', CubicalPersistence(n_jobs=-1))

    partial_pipeline_steps = []
    partial_pipeline_steps.append([cubical_lower])
    partial_pipeline_steps.append([('inverter', Inverter(n_jobs=-1)),
                                   cubical_lower])

    for b, f in itertools.product(binned_steps, filtrations):
        partial_pipeline_steps.append(
            [b, f, ('cubical', CubicalPersistence(n_jobs=-1))])

    feature_pipelines = []
    for s, f in itertools.product(partial_pipeline_steps, features):
        feature_pipelines.append(Pipeline(s + [f]))

    return feature_pipelines
Esempio n. 2
0
def bettiCurve_pipe1(img_file):
    """
    Pipeline 1: Binarizer --> Height Filtration --> Cubical Persistance --> Betti Curve
    """
    img = cv2.imread(img_file)
    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # blur the image to reduce noise
    figure_size = 9  # the dimension of the x and y axis of the kernal.
    img = cv2.blur(img, (figure_size, figure_size))

    shape = img.shape
    images = np.zeros((1, *shape))
    images[0] = img
    bz = Binarizer(threshold=40 / 255)
    binned = bz.fit_transform(images)
    p = make_pipeline(HeightFiltration(direction=np.array([1, 1])),
                      CubicalPersistence(), BettiCurve(n_bins=50))
    return p.fit_transform(binned)
Esempio n. 3
0
def test_height_transform(direction, images, expected):
    height = HeightFiltration(direction=direction)

    assert_almost_equal(height.fit_transform(images),
                        expected)
Esempio n. 4
0
def test_height_errors():
    direction = 'a'
    height = HeightFiltration(direction=direction)
    with pytest.raises(TypeError):
        height.fit(images_2D)
Esempio n. 5
0
def test_height_not_fitted():
    height = HeightFiltration()
    with pytest.raises(NotFittedError):
        height.transform(images_2D)
Esempio n. 6
0
def test_height_fit_transform_plot():
    HeightFiltration().fit_transform_plot(images_2D, sample=0)
Esempio n. 7
0
X_copy = np.copy(X)
X_copy = X_copy.reshape((40000, 28, 28))

X[X <= .4] = 0
X[X > .4] = 1
X = X.reshape((40000, 28, 28))

X_bin = X

# X_index = np.zeros((40000, 28, 28))
# for i in tqdm(range(40000)):
#     img = X[i]
#     x_arr, y_arr = np.nonzero(img)
#     X_index[i] = np.array([x_arr, y_arr]).T

hf = HeightFiltration()
df = DilationFiltration()
rf = RadialFiltration(np.array([8, 15]))
X_used = X_bin
y_used = y

## Create the Filtrations
X_hf = hf.fit_transform(X_used, y_used)
X_df = df.fit_transform(X_used, y_used)
X_rf = rf.fit_transform(X_used, y_used)

fig = plt.figure()
fig.set_size_inches((12, 9))
a = fig.add_subplot(2, 2, 1)
a.set_title("Height filtration")
imgplot = plt.imshow(X_hf[4], cmap="viridis")
Esempio n. 8
0
pio.renderers.default = 'plotly_mimetype'

images_2D = np.stack([np.ones((3, 4)),
                      np.concatenate([np.ones((3, 2)), np.zeros((3, 2))],
                                     axis=1),
                      np.zeros((3, 4))], axis=0)

images_3D = np.stack([np.ones((3, 4, 2)),
                      np.concatenate([np.ones((3, 2, 2)),
                                      np.zeros((3, 2, 2))], axis=1),
                      np.zeros((3, 4, 2))], axis=0)


@pytest.mark.parametrize("transformer",
                         [HeightFiltration(), RadialFiltration(),
                          DilationFiltration(), ErosionFiltration(),
                          SignedDistanceFiltration(), DensityFiltration()])
def test_invalid_input_shape(transformer):
    X = np.ones((1, 1, 1, 1, 1))
    with pytest.raises(ValueError, match="Input of `fit`"):
        transformer.fit(X)


def test_height_not_fitted():
    height = HeightFiltration()
    with pytest.raises(NotFittedError):
        height.transform(images_2D)


def test_height_errors():