Esempio n. 1
0
 def test_predict_target_to_feature_dict(self, data, X_y, estimator):
     X, y = X_y
     X_train, y_train, X_test, y_test = FeatureSplitter().transform(X, y)
     target_to_feature_dict = data.draw(
         str_target_to_feature_dicts(targets=y.columns, features=X.columns))
     multi_feature_gar = MultiFeatureGAR(estimator)
     multi_feature_gar.target_to_features_dict = target_to_feature_dict
     multi_feature_gar.fit(X_train, y_train)
     multi_feature_gar.predict(X_test)
Esempio n. 2
0
 def test_fit_target_to_feature_dict_set_after_consistent(
         self, data, X_y, estimator):
     X, y = X_y
     X_train, y_train, X_test, y_test = FeatureSplitter().transform(X, y)
     target_to_feature_dict = data.draw(
         str_target_to_feature_dicts(targets=y.columns, features=X.columns))
     multi_feature_gar = MultiFeatureGAR(
         estimator, target_to_features_dict=target_to_feature_dict)
     multi_feature_gar.target_to_features_dict = target_to_feature_dict
     multi_feature_gar.fit(X_train, y_train)
     for i, estimator_ in enumerate(multi_feature_gar.estimators_):
         expected_n_features = len(target_to_feature_dict[y.columns[i]])
         assert len(estimator_.coef_) == expected_n_features