def test_predict_with_no_fit(self, time_series): base_model = LinearRegression() gar_no_feedforward = GAR(estimator=base_model) with pytest.raises(NotFittedError): gar_no_feedforward.predict(time_series)
def test_fit_as_multi_output_regressor_if_target_to_feature_none( self, estimator, X_y ): X, y = X_y X_train, y_train, X_test, y_test = FeatureSplitter().transform(X, y) multi_feature_gar = MultiFeatureGAR(estimator) multi_feature_gar.fit(X_train, y_train) gar = GAR(estimator) gar.fit(X_train, y_train) pd.testing.assert_frame_equal( multi_feature_gar.predict(X_test), gar.predict(X_test), )
def __init__(self, p: int, horizon: int): features = [ tuple((f"s{i}", Shift(i), make_column_selector(dtype_include=np.number))) for i in range(1, p + 1) ] model = GAR(LinearRegression()) super().__init__(features=features, horizon=horizon, model=model)
def test_correct_fit_date(self, X_y): base_model = LinearRegression() feature_splitter = FeatureSplitter() x, y = X_y[0], X_y[1] x_train, y_train, x_test, y_test = feature_splitter.transform(x, y) gar_no_feedforward = GAR(estimator=base_model) gar_no_feedforward.fit(x_train, y_train) predictions = gar_no_feedforward.predict(x_test) assert len(predictions) == len(x_test) np.testing.assert_array_equal(predictions.index, x_test.index) gar_with_feedforward = GARFF(estimator=base_model) gar_with_feedforward.fit(x_train, y_train) predictions = gar_with_feedforward.predict(x_test) assert len(predictions) == len(x_test) np.testing.assert_array_equal(predictions.index, x_test.index)
def __init__( self, p: int, horizon: Union[int, List[int]], explainer_type: Optional[str] = None, ): self.p = p self.explainer_type = explainer_type features = [ tuple((f"s{i}", Shift(i), make_column_selector(dtype_include=np.number))) for i in range(p) ] model = GAR(LinearRegression(), explainer_type=explainer_type) super().__init__(features=features, horizon=horizon, model=model)
def model2(): lr = Ridge(alpha=0.1) return GAR(lr)
def model1(): lr = LinearRegression() return GAR(lr)