Esempio n. 1
0
    def step5_add_odometry_and_landmark_observations():
        # Create an empty nonlinear factor graph.
        graph = gtsam.NonlinearFactorGraph()

        # Create keys for the involved variables.
        X2 = X(2)
        X3 = X(3)
        L2 = L(2)

        # Update the list with the new variable keys.
        pose_variables.append(X3)
        landmark_variables.append(L2)

        # Add the odometry measurement.
        odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.1, 0.1, 0.1]))
        graph.add(
            gtsam.BetweenFactorPose2(X2, X3, gtsam.Pose2(2.0, 0.0, 0.0),
                                     odometry_noise))

        # Add the landmark observation.
        measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.05, 0.1]))
        graph.add(
            gtsam.BearingRangeFactor2D(X3, L2, gtsam.Rot2.fromDegrees(90), 2.0,
                                       measurement_noise))

        # Set initial estimates only for the new variables.
        initial_estimate = gtsam.Values()
        initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
        initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))

        # Update ISAM2 with the new factor graph.
        isam.update(graph, initial_estimate)
Esempio n. 2
0
    def plot(self,
             values: gtsam.Values,
             title: str = "Estimated Trajectory",
             fignum: int = POSES_FIG + 1,
             show: bool = False):
        """
        Plot poses in values.

        Args:
            values: The values object with the poses to plot.
            title: The title of the plot.
            fignum: The matplotlib figure number.
                POSES_FIG is a value from the PreintegrationExample which we simply increment to generate a new figure.
            show: Flag indicating whether to display the figure.
        """
        i = 0
        while values.exists(X(i)):
            pose_i = values.atPose3(X(i))
            plot_pose3(fignum, pose_i, 1)
            i += 1
        plt.title(title)

        gtsam.utils.plot.set_axes_equal(fignum)

        print("Bias Values", values.atConstantBias(BIAS_KEY))

        plt.ioff()

        if show:
            plt.show()
Esempio n. 3
0
def plot_3d(result, ax, seen):
    ax.cla()

    # Plot cameras
    i = 0
    while result.exists(X(i)):
        pose_i = result.atPose3(X(i))
        gtsam_plot.plot_pose3_on_axes(ax, pose_i, 8)
        i += 1

    # plot landmarks
    if isinstance(seen, int):
        seen = np.arange(seen)

    for i in seen:
        try:
            pose_i = result.atPose3(L(i))
            gtsam_plot.plot_pose3_on_axes(ax, pose_i, 4)
        except:
            pass

    # draw
    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")
    set_axes_equal(ax)
    ax.view_init(-55, -85)
Esempio n. 4
0
    def add_point(self, pointsInitial, measurements, octave):

        if pointsInitial[-1] > self.depth_threshold:
            information = self.inv_lvl_sigma2[octave] * np.identity(2)
            stereo_model = gt.noiseModel_Diagonal.Information(information)
            huber = gt.noiseModel_mEstimator_Huber.Create(self.deltaMono)
            robust_model = gt.noiseModel_Robust(huber, stereo_model)
            factor = gt.GenericProjectionFactorCal3_S2(
                gt.Point2(measurements[0], measurements[2]), robust_model,
                X(1), L(self.counter), self.K_mono)
            self.is_stereo.append(False)
        else:
            information = self.inv_lvl_sigma2[octave] * np.identity(3)
            stereo_model = gt.noiseModel_Diagonal.Information(information)
            huber = gt.noiseModel_mEstimator_Huber.Create(self.deltaStereo)
            robust_model = gt.noiseModel_Robust(huber, stereo_model)
            factor = gt.GenericStereoFactor3D(
                gt.StereoPoint2(*tuple(measurements)), robust_model, X(1),
                L(self.counter), self.K_stereo)
            self.is_stereo.append(True)

        self.graph.add(
            gt.NonlinearEqualityPoint3(L(self.counter),
                                       gt.Point3(pointsInitial)))
        self.initialEstimate.insert(L(self.counter), gt.Point3(pointsInitial))
        self.graph.add(factor)
        self.octave.append(octave)
        self.counter += 1
Esempio n. 5
0
def visual_ISAM2_plot(result):
    """
    VisualISAMPlot plots current state of ISAM2 object
    Author: Ellon Paiva
    Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
    """

    # Declare an id for the figure
    fignum = 0

    fig = plt.figure(fignum)
    axes = fig.gca(projection='3d')
    plt.cla()

    # Plot points
    # Can't use data because current frame might not see all points
    # marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
    # gtsam.plot_3d_points(result, [], marginals)
    gtsam_plot.plot_3d_points(fignum, result, 'rx')

    # Plot cameras
    i = 0
    while result.exists(X(i)):
        pose_i = result.atPose3(X(i))
        gtsam_plot.plot_pose3(fignum, pose_i, 10)
        i += 1

    # draw
    axes.set_xlim3d(-40, 40)
    axes.set_ylim3d(-40, 40)
    axes.set_zlim3d(-40, 40)
    plt.pause(1)
Esempio n. 6
0
 def add_node(self, kf):
     self.initialEstimate.insert(X(kf.kfID), gt.Pose3(kf.pose_matrix()))
     for kf_n, rel_pose, _ in kf.neighbors:
         if kf_n.kfID > kf.kfID:
             continue
         self.graph.add(
             gt.BetweenFactorPose3(X(kf.kfID), X(kf_n.kfID),
                                   gt.Pose3(rel_pose), self.covariance))
Esempio n. 7
0
    def test_SFMExample(self):
        options = generator.Options()
        options.triangle = False
        options.nrCameras = 10

        [data, truth] = generator.generate_data(options)

        measurementNoiseSigma = 1.0
        pointNoiseSigma = 0.1
        poseNoiseSigmas = np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1])

        graph = gtsam.NonlinearFactorGraph()

        # Add factors for all measurements
        measurementNoise = Isotropic.Sigma(2, measurementNoiseSigma)
        for i in range(len(data.Z)):
            for k in range(len(data.Z[i])):
                j = data.J[i][k]
                graph.add(gtsam.GenericProjectionFactorCal3_S2(
                    data.Z[i][k], measurementNoise,
                    X(i), P(j), data.K))

        posePriorNoise = Diagonal.Sigmas(poseNoiseSigmas)
        graph.add(gtsam.PriorFactorPose3(X(0),
                                   truth.cameras[0].pose(), posePriorNoise))
        pointPriorNoise = Isotropic.Sigma(3, pointNoiseSigma)
        graph.add(gtsam.PriorFactorPoint3(P(0),
                                    truth.points[0], pointPriorNoise))

        # Initial estimate
        initialEstimate = gtsam.Values()
        for i in range(len(truth.cameras)):
            pose_i = truth.cameras[i].pose()
            initialEstimate.insert(X(i), pose_i)
        for j in range(len(truth.points)):
            point_j = truth.points[j]
            initialEstimate.insert(P(j), point_j)

        # Optimization
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
        for i in range(5):
            optimizer.iterate()
        result = optimizer.values()

        # Marginalization
        marginals = gtsam.Marginals(graph, result)
        marginals.marginalCovariance(P(0))
        marginals.marginalCovariance(X(0))

        # Check optimized results, should be equal to ground truth
        for i in range(len(truth.cameras)):
            pose_i = result.atPose3(X(i))
            self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)

        for j in range(len(truth.points)):
            point_j = result.atPoint3(P(j))
            self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
Esempio n. 8
0
def plot_2d(result, isam, ax, seen):
    idx = np.ix_((0, -1), (0, -1))
    ax.cla()

    # plot cameras
    i = 0
    cameras = []
    while result.exists(X(i)):
        # get all data from pose
        pose = result.atPose3(X(i))
        # R = pose.rotation().matrix()
        # cov = isam.marginalCovariance(X(i))[3:6,3:6]
        # cov = ( R@[email protected] )[idx]
        t = [result.atPose3(X(i)).x(), result.atPose3(X(i)).z()]

        # do we want pose covariances?
        # ax.add_patch(cov_patch(t, cov, 'b'))
        cameras.append(t)

        i += 1

    # plot landmarks
    landmarks = []
    for i in seen:
        # get all data from pose
        pose = result.atPose3(L(i))
        R = pose.rotation().matrix()
        cov = isam.marginalCovariance(L(i))[3:6, 3:6]
        cov = (R @ cov @ R.T)[idx]
        t = [result.atPose3(L(i)).x(), result.atPose3(L(i)).z()]

        ax.add_patch(cov_patch(t, cov, 'r'))
        landmarks.append(t)

    cameras = np.array(cameras)
    landmarks = np.array(landmarks)

    ax.plot(cameras[:, 0],
            cameras[:, 1],
            label="Camera Poses",
            c='b',
            marker='o')
    ax.scatter(landmarks[:, 0], landmarks[:, 1], label="Landmarks", c='r')

    ax.legend()
    ax.set_xlabel("X")
    ax.set_ylabel("Z")
    ax.set_aspect('equal')
Esempio n. 9
0
    def predict(self, x, u):
        """
        Should just predict next pose and add it together with the odometry factor 
        """
        odom_factor = gtsam.BetweenFactorPose2(X(self.kx), X(self.kx + 1),
                                               gtsam.Pose2(u[0], u[1], u[2]),
                                               self.odometry_noise)

        self.add_factor(odom_factor)
        xpred = self.f(x, u)

        self.estimates.insert(X(self.kx + 1), utils.np2pose(xpred))

        self.kx += 1

        return x
Esempio n. 10
0
def save_results(isam: gtsam.ISAM2, output_filename: str, first_gps_pose: int,
                 gps_measurements: List[GpsMeasurement]):
    """Write the results from `isam` to `output_filename`."""
    # Save results to file
    print("Writing results to file...")
    with open(output_filename, 'w', encoding='UTF-8') as fp_out:
        fp_out.write(
            "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n")

        result = isam.calculateEstimate()
        for i in range(first_gps_pose, len(gps_measurements)):
            pose_key = X(i)
            vel_key = V(i)
            bias_key = B(i)

            pose = result.atPose3(pose_key)
            velocity = result.atVector(vel_key)
            bias = result.atConstantBias(bias_key)

            pose_quat = pose.rotation().toQuaternion()
            gps = gps_measurements[i].position

            print(f"State at #{i}")
            print(f"Pose:\n{pose}")
            print(f"Velocity:\n{velocity}")
            print(f"Bias:\n{bias}")

            fp_out.write("{},{},{},{},{},{},{},{},{},{},{}\n".format(
                gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
                pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
                gps[0], gps[1], gps[2]))
Esempio n. 11
0
 def addPrior(self, i: int, graph: gtsam.NonlinearFactorGraph):
     """Add a prior on the navigation state at time `i`."""
     state = self.scenario.navState(i)
     graph.push_back(
         gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
     graph.push_back(
         gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
Esempio n. 12
0
    def __init__(self,
                 p,
                 q,
                 r,
                 alphas=np.array([0.001, 0.0001]),
                 sensor_offset=np.zeros(2)):

        # Add noise models
        self.odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(q)
        self.measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(r)

        self.alphas = alphas
        self.sensor_offset = sensor_offset

        # Create graph and initilize newest pose
        self.graph = gtsam.NonlinearFactorGraph()
        self.poses = gtsam.Values()

        # To enumerate all poses and landmarks
        self.kx = 1
        self.kl = 1

        self.landmarks = np.empty(0)

        # Initilize graph with prior
        prior_noise = gtsam.noiseModel.Diagonal.Sigmas(p)
        self.graph.add(
            gtsam.PriorFactorPose2(X(self.kx), gtsam.Pose2(0.0, 0.0, 0.0),
                                   prior_noise))
Esempio n. 13
0
def create_graph():
    """Create a basic linear factor graph for testing"""
    graph = gtsam.GaussianFactorGraph()

    x0 = X(0)
    x1 = X(1)
    x2 = X(2)

    BETWEEN_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.ones(1))
    PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.ones(1))

    graph.add(x1, np.eye(1), x0, -np.eye(1), np.ones(1), BETWEEN_NOISE)
    graph.add(x2, np.eye(1), x1, -np.eye(1), 2 * np.ones(1), BETWEEN_NOISE)
    graph.add(x0, np.eye(1), np.zeros(1), PRIOR_NOISE)

    return graph, (x0, x1, x2)
Esempio n. 14
0
    def __init__(self):
        # Initialize the class
        cls_un_model_fake_1d_conf.initialize_python_objects()

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
Esempio n. 15
0
    def __init__(self, model_noise):

        # The instances differ from each other by model noise
        self.model_noise = model_noise

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
Esempio n. 16
0
    def test_printing(self):
        """Tests if the factor result matches the GTSAM Pose2 unit test"""
        gT1 = Pose2(1, 2, np.pi / 2)
        gT2 = Pose2(-1, 4, np.pi)

        def error_func(this: CustomFactor, v: gtsam.Values,
                       _: List[np.ndarray]):
            """Minimal error function stub"""
            return np.array([1, 0, 0])

        noise_model = gtsam.noiseModel.Unit.Create(3)
        from gtsam.symbol_shorthand import X
        cf = CustomFactor(noise_model, [X(0), X(1)], error_func)

        cf_string = """CustomFactor on x0, x1
  noise model: unit (3) 
"""
        self.assertEqual(cf_string, repr(cf))
    def __init__(self):

        # Model initialization
        joint_lambda_pose_factor_fake_1d.initialize_python_objects()

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
        self.Lam = lambda k: L(k)
Esempio n. 18
0
    def __init__(self, exp_add_1, exp_add_2, exp_add_3, exp_add_4, exp_add_5,
                 rinf_add_1, rinf_add_2, rinf_add_3, rinf_add_4, rinf_add_5):
        # Initialize the class
        cls_un_model_4d.initialize_python_objects(exp_add_1, exp_add_2,
                                                  exp_add_3, exp_add_4,
                                                  exp_add_5, rinf_add_1,
                                                  rinf_add_2, rinf_add_3,
                                                  rinf_add_4, rinf_add_5)

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
    def __init__(self,
                 geo_model,
                 da_model,
                 lambda_model,
                 prior_mean,
                 prior_noise,
                 lambda_prior_mean=(0., 0.),
                 lambda_prior_noise=((0.5, 0.), (0., 0.5)),
                 cls_enable=True):

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
        self.Lam = lambda k: L(k)

        # Enable Lambda inference
        self.cls_enable = cls_enable

        # Camera pose prior
        self.graph = gtsam.NonlinearFactorGraph()
        self.graph.add(
            gtsam.PriorFactorPose3(self.X(0), prior_mean, prior_noise))

        # Setting initial values
        self.initial = gtsam.Values()
        self.initial.insert(self.X(0), prior_mean)
        self.prev_step_camera_pose = prior_mean
        self.daRealization = list()

        # Setting up models
        self.geoModel = geo_model
        self.daModel = da_model
        self.lambdaModel = lambda_model

        # Setting up ISAM2
        params2 = gtsam.ISAM2Params()
        #params2.relinearize_threshold = 0.01
        #params2.relinearize_skip = 1
        self.isam = gtsam.ISAM2(params2)
        self.isam.update(self.graph, self.initial)

        # Set custom lambda
        if type(lambda_prior_mean) is np.ndarray:
            self.lambda_prior_mean = lambda_prior_mean
        else:
            self.lambda_prior_mean = np.array(lambda_prior_mean)
        self.lambda_prior_cov = gtsam.noiseModel.Gaussian.Covariance(
            np.matrix(lambda_prior_noise))

        self.num_cls = len(self.lambda_prior_mean) + 1

        # Initialize object last lambda database
        self.object_lambda_dict = dict()
Esempio n. 20
0
    def __init__(self, exp_add_1, exp_add_2, exp_add_3, exp_add_4, exp_add_5,
                 rinf_add_1, rinf_add_2, rinf_add_3, rinf_add_4, rinf_add_5):

        # Model initialization
        joint_lambda_pose_factor_2d.initialize_python_objects(
            exp_add_1, exp_add_2, exp_add_3, exp_add_4, exp_add_5, rinf_add_1,
            rinf_add_2, rinf_add_3, rinf_add_4, rinf_add_5)

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)
        self.Lam = lambda k: L(k)
Esempio n. 21
0
    def __init__(self,
                 class_probability_prior,
                 geo_model,
                 da_model,
                 cls_model,
                 prior_mean,
                 prior_noise,
                 cls_enable=True):

        # Symbol initialization
        self.X = lambda i: X(i)
        self.XO = lambda j: O(j)

        # Camera pose prior
        self.graph = gtsam.NonlinearFactorGraph()
        self.graph.add(
            gtsam.PriorFactorPose3(self.X(0), prior_mean, prior_noise))

        # Class realization and prior probabilities. if one of the class probabilities is 0 it will
        # set the logWeight to -inf
        self.cls_enable = cls_enable

        # Setting initial values
        self.initial = gtsam.Values()
        self.initial.insert(self.X(0), prior_mean)
        self.prev_step_camera_pose = prior_mean
        self.daRealization = list()

        # self.initial.print()

        # Setting up models
        self.geoModel = geo_model
        self.daModel = da_model
        self.clsModel = cls_model
        # self.classifierModel = classifierModel

        # Setting up ISAM2 TODO: make ISAM2 work. As of now, it doesn't take the initial values at optimize_isam2 method
        params2 = gtsam.ISAM2Params()
        # params2.relinearize_threshold = 0.01
        # params2.relinearize_skip = 1
        self.isam = gtsam.ISAM2(params2)
        self.isam.update(self.graph, self.initial)

        # Setting up weight memory
        self.weight_memory = list()
        self.normalized_weight = 0

        # Setting up class realization
        self.classRealization = dict()
        self.classProbabilityPrior = class_probability_prior
Esempio n. 22
0
    def add_pose(self, R, t):
        # Add measurements
        # pose 1
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(520, 480, 440), stereo_model, x1, l1, K))
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(120, 80, 440), stereo_model, x1, l2, K))
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(320, 280, 140), stereo_model, x1, l3, K))

        # pose 2
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(570, 520, 490), stereo_model, x2, l1, K))
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(70, 20, 490), stereo_model, x2, l2, K))
        # graph.add(gt.GenericStereoFactor3D(gt.StereoPoint2(320, 270, 115), stereo_model, x2, l3, K))
        # self.initialEstimate.insert(X(1), gt.Rot3(pose[0]), gt.Point3(pose[1]))
        t = t.reshape((3, 1))
        self.initialEstimate.insert(X(1),
                                    gt.Pose3(np.concatenate((R, t), axis=1)))
Esempio n. 23
0
    def __init__(self):
        # Create graph container and add factors to it
        self.graph = gt.NonlinearFactorGraph()

        # Create initial estimate for camera poses and landmarks
        self.initialEstimate = gt.Values()

        sigmas = np.array([
            5 * np.pi / 180, 5 * np.pi / 180, 5 * np.pi / 180, 0.05, 0.05, 0.05
        ])
        self.covariance = gt.noiseModel.Diagonal.Sigmas(sigmas)
        self.graph.add(gt.NonlinearEqualityPose3(X(0), gt.Pose3(np.eye(4))))

        self.result = None
        self.marginals = None
Esempio n. 24
0
    def step3_add_pose_from_odometry():
        # Create an empty nonlinear factor graph.
        graph = gtsam.NonlinearFactorGraph()

        # Create keys for the involved variables.
        X1 = X(1)
        X2 = X(2)

        # Update the list with the new pose variable key.
        pose_variables.append(X2)

        # Add an odometry measurement.
        odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.1, 0.1, 0.1]))
        graph.add(
            gtsam.BetweenFactorPose2(X1, X2, gtsam.Pose2(2.0, 0.0, 0.0),
                                     odometry_noise))

        # Set initial estimates only for the new variables.
        initial_estimate = gtsam.Values()
        initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))

        # Update ISAM2 with the new factor graph.
        isam.update(graph, initial_estimate)
Esempio n. 25
0
    def step4_add_new_landmark_observation():
        # Create an empty nonlinear factor graph.
        graph = gtsam.NonlinearFactorGraph()

        # Create keys for the involved variables.
        X2 = X(2)
        L1 = L(1)

        # Add the landmark observation.
        measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.05, 0.1]))
        graph.add(
            gtsam.BearingRangeFactor2D(X2, L1, gtsam.Rot2.fromDegrees(90), 2.0,
                                       measurement_noise))

        # Update ISAM2 with the new factor graph.
        # There are no new variables this update, so no new initial values.
        isam.update(graph, gtsam.Values())
Esempio n. 26
0
    def step2_add_landmark_observation():
        # Create an empty nonlinear factor graph.
        graph = gtsam.NonlinearFactorGraph()

        # Create keys for the involved variables.
        X1 = X(1)
        L1 = L(1)

        # Update the list with the new landmark variable key.
        landmark_variables.append(L1)

        # Add the landmark observation.
        measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.05, 0.1]))
        graph.add(
            gtsam.BearingRangeFactor2D(X1, L1, gtsam.Rot2.fromDegrees(45),
                                       np.sqrt(4.0 + 4.0), measurement_noise))

        # Set initial estimates only for the new variables.
        initial_estimate = gtsam.Values()
        initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))

        # Update ISAM2 with the new factor graph.
        isam.update(graph, initial_estimate)
Esempio n. 27
0
    def step1_initialize():
        # Create an empty nonlinear factor graph.
        # We will need to do this for every update.
        graph = gtsam.NonlinearFactorGraph()

        # Create a key for the first pose.
        X1 = X(1)

        # Update the list with the new pose variable key.
        pose_variables.append(X1)

        # Add a prior on pose X1 at the origin.
        prior_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.1, 0.1, 0.1]))
        graph.add(
            gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0),
                                   prior_noise))

        # Set an initial estimate for the first pose.
        initial_estimate = gtsam.Values()
        initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))

        # Update ISAM2 with the initial factor graph.
        isam.update(graph, initial_estimate)
Esempio n. 28
0
# Graph initialization
graph_1 = gtsam.NonlinearFactorGraph()

# Add prior lambda
prior_noise = gtsam.noiseModel.Diagonal.Covariance(
    np.array([[3.2, 0.0, 0.0, 0.0], [0.0, 3.2, 0.0, 0.0], [0.0, 0.0, 3.2, 0.0],
              [0.0, 0.0, 0.0, 3.2]]))
prior_noise_pose = gtsam.noiseModel.Diagonal.Variances(
    np.array([0.003, 0.003, 0.001, 0.003, 0.003, 0.003]))
geo_noise = gtsam.noiseModel.Diagonal.Variances(
    np.array([0.003, 0.003, 0.001, 0.002, 0.002, 0.003]))
graph_1.add(
    lambda_prior_factor.LambdaPriorFactor(L(0), np.array([0., 0., 0., 0.]),
                                          prior_noise))
graph_1.add(
    gtsam.PriorFactorPose3(X(0), gtsam.Pose3(gtsam.Pose2(0.0, 0.0, 0.0)),
                           prior_noise_pose))
graph_1.add(
    gtsam.BetweenFactorPose3(X(0), XO(1),
                             gtsam.Pose3(gtsam.Pose2(1.0, 0.0, -0 * 3.14 / 2)),
                             geo_noise))
graph_1.add(
    joint_lambda_pose_factor_fake_2d.JLPFactor(
        X(0), XO(1), Lambda(0), Lambda(1), [1.0, 0.0, 0.0, 0.0],
        [1.1, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 1.1, 0.0, 1.1]))
print(graph_1)

initial = gtsam.Values()
initial.insert(Lambda(0), [0.0, 0.0, 0.0, 0.0])
initial.insert(Lambda(1), [0.0, 0.0, 0.0, 0.0])
initial.insert(
def batch_factorgraph_example():
    # Create an empty nonlinear factor graph.
    graph = gtsam.NonlinearFactorGraph()

    # Create the keys for the poses.
    X1 = X(1)
    X2 = X(2)
    X3 = X(3)
    pose_variables = [X1, X2, X3]

    # Create keys for the landmarks.
    L1 = L(1)
    L2 = L(2)
    landmark_variables = [L1, L2]

    # Add a prior on pose X1 at the origin.
    prior_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1, 0.1]))
    graph.add(
        gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), prior_noise))

    # Add odometry factors between X1,X2 and X2,X3, respectively
    odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1,
                                                                0.1]))
    graph.add(
        gtsam.BetweenFactorPose2(X1, X2, gtsam.Pose2(2.0, 0.0, 0.0),
                                 odometry_noise))
    graph.add(
        gtsam.BetweenFactorPose2(X2, X3, gtsam.Pose2(2.0, 0.0, 0.0),
                                 odometry_noise))

    # Add Range-Bearing measurements to two different landmarks L1 and L2
    measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.05, 0.1]))
    graph.add(
        gtsam.BearingRangeFactor2D(X1, L1, gtsam.Rot2.fromDegrees(45),
                                   np.sqrt(4.0 + 4.0), measurement_noise))
    graph.add(
        gtsam.BearingRangeFactor2D(X2, L1, gtsam.Rot2.fromDegrees(90), 2.0,
                                   measurement_noise))
    graph.add(
        gtsam.BearingRangeFactor2D(X3, L2, gtsam.Rot2.fromDegrees(90), 2.0,
                                   measurement_noise))

    # Create (deliberately inaccurate) initial estimate
    initial_estimate = gtsam.Values()
    initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
    initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
    initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
    initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
    initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))

    # Create an optimizer.
    params = gtsam.LevenbergMarquardtParams()
    optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate,
                                                  params)

    # Solve the MAP problem.
    result = optimizer.optimize()

    # Calculate marginal covariances for all variables.
    marginals = gtsam.Marginals(graph, result)

    # Extract marginals
    pose_marginals = []
    for var in pose_variables:
        pose_marginals.append(
            MultivariateNormalParameters(result.atPose2(var),
                                         marginals.marginalCovariance(var)))

    landmark_marginals = []
    for var in landmark_variables:
        landmark_marginals.append(
            MultivariateNormalParameters(result.atPoint2(var),
                                         marginals.marginalCovariance(var)))

    # You can extract the joint marginals like this.
    joint_all = marginals.jointMarginalCovariance(
        gtsam.KeyVector(pose_variables + landmark_variables))
    print("Joint covariance over all variables:")
    print(joint_all.fullMatrix())

    # Plot the marginals.
    plot_result(pose_marginals, landmark_marginals)
Esempio n. 30
0
def optimize(gps_measurements: List[GpsMeasurement],
             imu_measurements: List[ImuMeasurement],
             sigma_init_x: gtsam.noiseModel.Diagonal,
             sigma_init_v: gtsam.noiseModel.Diagonal,
             sigma_init_b: gtsam.noiseModel.Diagonal,
             noise_model_gps: gtsam.noiseModel.Diagonal,
             kitti_calibration: KittiCalibration, first_gps_pose: int,
             gps_skip: int) -> gtsam.ISAM2:
    """Run ISAM2 optimization on the measurements."""
    # Set initial conditions for the estimated trajectory
    # initial pose is the reference frame (navigation frame)
    current_pose_global = Pose3(gtsam.Rot3(),
                                gps_measurements[first_gps_pose].position)

    # the vehicle is stationary at the beginning at position 0,0,0
    current_velocity_global = np.zeros(3)
    current_bias = gtsam.imuBias.ConstantBias()  # init with zero bias

    imu_params = getImuParams(kitti_calibration)

    # Set ISAM2 parameters and create ISAM2 solver object
    isam_params = gtsam.ISAM2Params()
    isam_params.setFactorization("CHOLESKY")
    isam_params.relinearizeSkip = 10

    isam = gtsam.ISAM2(isam_params)

    # Create the factor graph and values object that will store new factors and
    # values to add to the incremental graph
    new_factors = gtsam.NonlinearFactorGraph()
    # values storing the initial estimates of new nodes in the factor graph
    new_values = gtsam.Values()

    # Main loop:
    # (1) we read the measurements
    # (2) we create the corresponding factors in the graph
    # (3) we solve the graph to obtain and optimal estimate of robot trajectory
    print("-- Starting main loop: inference is performed at each time step, "
          "but we plot trajectory every 10 steps")

    j = 0
    included_imu_measurement_count = 0

    for i in range(first_gps_pose, len(gps_measurements)):
        # At each non=IMU measurement we initialize a new node in the graph
        current_pose_key = X(i)
        current_vel_key = V(i)
        current_bias_key = B(i)
        t = gps_measurements[i].time

        if i == first_gps_pose:
            # Create initial estimate and prior on initial pose, velocity, and biases
            new_values.insert(current_pose_key, current_pose_global)
            new_values.insert(current_vel_key, current_velocity_global)
            new_values.insert(current_bias_key, current_bias)

            new_factors.addPriorPose3(current_pose_key, current_pose_global,
                                      sigma_init_x)
            new_factors.addPriorVector(current_vel_key,
                                       current_velocity_global, sigma_init_v)
            new_factors.addPriorConstantBias(current_bias_key, current_bias,
                                             sigma_init_b)
        else:
            t_previous = gps_measurements[i - 1].time

            # Summarize IMU data between the previous GPS measurement and now
            current_summarized_measurement = gtsam.PreintegratedImuMeasurements(
                imu_params, current_bias)

            while (j < len(imu_measurements)
                   and imu_measurements[j].time <= t):
                if imu_measurements[j].time >= t_previous:
                    current_summarized_measurement.integrateMeasurement(
                        imu_measurements[j].accelerometer,
                        imu_measurements[j].gyroscope, imu_measurements[j].dt)
                    included_imu_measurement_count += 1
                j += 1

            # Create IMU factor
            previous_pose_key = X(i - 1)
            previous_vel_key = V(i - 1)
            previous_bias_key = B(i - 1)

            new_factors.push_back(
                gtsam.ImuFactor(previous_pose_key, previous_vel_key,
                                current_pose_key, current_vel_key,
                                previous_bias_key,
                                current_summarized_measurement))

            # Bias evolution as given in the IMU metadata
            sigma_between_b = gtsam.noiseModel.Diagonal.Sigmas(
                np.asarray([
                    np.sqrt(included_imu_measurement_count) *
                    kitti_calibration.accelerometer_bias_sigma
                ] * 3 + [
                    np.sqrt(included_imu_measurement_count) *
                    kitti_calibration.gyroscope_bias_sigma
                ] * 3))

            new_factors.push_back(
                gtsam.BetweenFactorConstantBias(previous_bias_key,
                                                current_bias_key,
                                                gtsam.imuBias.ConstantBias(),
                                                sigma_between_b))

            # Create GPS factor
            gps_pose = Pose3(current_pose_global.rotation(),
                             gps_measurements[i].position)
            if (i % gps_skip) == 0:
                new_factors.addPriorPose3(current_pose_key, gps_pose,
                                          noise_model_gps)
                new_values.insert(current_pose_key, gps_pose)

                print(f"############ POSE INCLUDED AT TIME {t} ############")
                print(gps_pose.translation(), "\n")
            else:
                new_values.insert(current_pose_key, current_pose_global)

            # Add initial values for velocity and bias based on the previous
            # estimates
            new_values.insert(current_vel_key, current_velocity_global)
            new_values.insert(current_bias_key, current_bias)

            # Update solver
            # =======================================================================
            # We accumulate 2*GPSskip GPS measurements before updating the solver at
            # first so that the heading becomes observable.
            if i > (first_gps_pose + 2 * gps_skip):
                print(f"############ NEW FACTORS AT TIME {t:.6f} ############")
                new_factors.print()

                isam.update(new_factors, new_values)

                # Reset the newFactors and newValues list
                new_factors.resize(0)
                new_values.clear()

                # Extract the result/current estimates
                result = isam.calculateEstimate()

                current_pose_global = result.atPose3(current_pose_key)
                current_velocity_global = result.atVector(current_vel_key)
                current_bias = result.atConstantBias(current_bias_key)

                print(f"############ POSE AT TIME {t} ############")
                current_pose_global.print()
                print("\n")

    return isam