Esempio n. 1
0
 def test_retract(self):
     expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
                                  1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
     K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240,
                           1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
     d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10, 1], order='F')
     actual = K.retract(d)
     self.gtsamAssertEquals(actual, expected)
     np.testing.assert_allclose(d, K.localCoordinates(actual))
Esempio n. 2
0
    def setUpClass(cls):
        """
        Stereographic fisheye projection
        
        An equidistant fisheye projection with focal length f is defined
        as the relation r/f = 2*tan(theta/2), with r being the radius in the 
        image plane and theta the incident angle of the object point.
        """
        x, y, z = 1.0, 0.0, 1.0
        r = np.linalg.norm([x, y, z])
        u, v = 2*x/(z+r), 0.0
        cls.obj_point = np.array([x, y, z])
        cls.img_point = np.array([u, v])

        fx, fy, s, u0, v0 = 2, 2, 0, 0, 0
        k1, k2, p1, p2 = 0, 0, 0, 0
        xi = 1
        cls.stereographic = gtsam.Cal3Unified(fx, fy, s, u0, v0, k1, k2, p1, p2, xi)

        p1 = [-1.0, 0.0, -1.0]
        p2 = [ 1.0, 0.0, -1.0]
        q1 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
        q2 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
        pose1 = gtsam.Pose3(q1, p1)
        pose2 = gtsam.Pose3(q2, p2)
        camera1 = gtsam.PinholeCameraCal3Unified(pose1, cls.stereographic)
        camera2 = gtsam.PinholeCameraCal3Unified(pose2, cls.stereographic)
        cls.origin = np.array([0.0, 0.0, 0.0])
        cls.poses = gtsam.Pose3Vector([pose1, pose2])
        cls.cameras = gtsam.CameraSetCal3Unified([camera1, camera2])
        cls.measurements = gtsam.Point2Vector([k.project(cls.origin) for k in cls.cameras])
Esempio n. 3
0
    def test_jacobian(self):
        """Evaluate jacobian at optical axis"""
        obj_point_on_axis = np.array([0, 0, 1])
        img_point = np.array([0.0, 0.0])
        pose = gtsam.Pose3()
        camera = gtsam.Cal3Unified()
        state = gtsam.Values()
        camera_key, pose_key, landmark_key = K(0), P(0), L(0)
        state.insert_cal3unified(camera_key, camera)
        state.insert_point3(landmark_key, obj_point_on_axis)
        state.insert_pose3(pose_key, pose)
        g = gtsam.NonlinearFactorGraph()
        noise_model = gtsam.noiseModel.Unit.Create(2)
        factor = gtsam.GeneralSFMFactor2Cal3Unified(img_point, noise_model,
                                                    pose_key, landmark_key,
                                                    camera_key)
        g.add(factor)
        f = g.error(state)
        gaussian_factor_graph = g.linearize(state)
        H, z = gaussian_factor_graph.jacobian()
        self.assertAlmostEqual(f, 0)
        self.gtsamAssertEquals(z, np.zeros(2))
        self.gtsamAssertEquals(H @ H.T, 4 * np.eye(2))

        Dcal = np.zeros((2, 10), order='F')
        Dp = np.zeros((2, 2), order='F')
        camera.calibrate(img_point, Dcal, Dp)

        self.gtsamAssertEquals(
            Dcal,
            np.array([[0., 0., 0., -1., 0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., -1., 0., 0., 0., 0., 0.]]))
        self.gtsamAssertEquals(Dp, np.array([[1., -0.], [-0., 1.]]))
Esempio n. 4
0
 def test_Cal3Unified(self):
     K = gtsam.Cal3Unified()
     self.assertEqual(K.fx(), 1.)
     self.assertEqual(K.fx(), 1.)