Esempio n. 1
0
    def __init__(self, initial_state, covariance, alphas, beta):
        self._initial_state = gtsam.Pose2(initial_state[0], initial_state[1], initial_state[2])
        self._prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([covariance, covariance, covariance]))
        # self.observation_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([beta[0] ** 2, np.deg2rad(beta[1]) ** 2]))
        #self.observation_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([beta[0] ** 2, np.deg2rad(beta[1]) ** 2]))
        self.observation_noise = gtsam.noiseModel_Diagonal.Sigmas(
            np.array(([np.deg2rad(beta[1]) ** 2, (beta[0] / 100) ** 2])))
        self.beta = beta
        self.alphas = alphas ** 2
        self.pose_num = 0
        self.observation_num = 1000
        self.landmark_indexes = list()
        self.states_new = np.array([[]])
        self.observation_new = np.array([[]])

        self.graph = gtsam.NonlinearFactorGraph()
        self.estimations = gtsam.Values()
        self.result = gtsam.Values()
        self.parameters = gtsam.ISAM2Params()
        self.parameters.setRelinearizeThreshold(1e-4)
        self.parameters.setRelinearizeSkip(1)
        self.slam = gtsam.ISAM2(self.parameters)

        self.graph.add(gtsam.PriorFactorPose2(self.pose_num, self._initial_state, self._prior_noise))
        self.estimations.insert(self.pose_num, self._initial_state)
Esempio n. 2
0
    def action_step(self, action, action_noise):

        graph_add = gtsam.NonlinearFactorGraph()
        initial_add = gtsam.Values()

        # Setting path and initiating DA realization.
        path_length = len(self.daRealization)
        self.daRealization.append(0)

        # Advancing the belief by camera
        self.graph.add(
            gtsam.BetweenFactorPose3(self.X(path_length),
                                     self.X(path_length + 1), action,
                                     action_noise))
        graph_add.add(
            gtsam.BetweenFactorPose3(self.X(path_length),
                                     self.X(path_length + 1), action,
                                     action_noise))

        # Setting initial values, save an initial value vector for the propagated pose, need it later
        if self.initial.exists(self.X(path_length + 1)) is False:
            self.initial.insert(
                self.X(path_length + 1),
                self.initial.atPose3(self.X(path_length)).compose(action))
            # self.initial.insert(self.X(path_length + 1), gtsam.Pose3(gtsam.Pose2(0.0, 0.0, 0.0)))
        if initial_add.exists(self.X(path_length + 1)) is False:
            initial_add.insert(
                self.X(path_length + 1),
                self.initial.atPose3(self.X(path_length)).compose(action))
            # initial_add.insert(self.X(path_length + 1), gtsam.Pose3(gtsam.Pose2(0.0, 0.0, 0.0)))

        # Setting propagated belief object for weight computation
        self.prop_belief = self.graph.clone()
        self.prop_initial = gtsam.Values()
        for key in list(self.initial.keys()):
            self.prop_initial.insert(key, self.initial.atPose3(key))

        # self.optimize() #TODO: SEE IF WORKS
        #print(initial_add.exists(self.X(2)))
        self.isam.update(graph_add, initial_add)
        self.optimize()

        # non-existent object issue is resolved.
        self.marginals = gtsam.Marginals(self.prop_belief, self.result)

        # Setting resultsFlag to false to require optimization
        self.resultsFlag = False

        # Multi robot flag for twin measurements
        self.sim_measurement_flag = list()
Esempio n. 3
0
    def setUp(self):
        """Set up a small Karcher mean optimization example."""
        # Grabbed from KarcherMeanFactor unit tests.
        R = Rot3.Expmap(np.array([0.1, 0, 0]))
        rotations = {R, R.inverse()}  # mean is the identity
        self.expected = Rot3()

        def check(actual):
            # Check that optimizing yields the identity
            self.gtsamAssertEquals(actual.atRot3(KEY), self.expected, tol=1e-6)
            # Check that logging output prints out 3 lines (exact intermediate values differ by OS)
            self.assertEqual(self.capturedOutput.getvalue().count('\n'), 3)
            # reset stdout catcher
            self.capturedOutput.truncate(0)

        self.check = check

        self.graph = gtsam.NonlinearFactorGraph()
        for R in rotations:
            self.graph.add(gtsam.PriorFactorRot3(KEY, R, MODEL))
        self.initial = gtsam.Values()
        self.initial.insert(KEY, R)

        # setup output capture
        self.capturedOutput = StringIO()
        sys.stdout = self.capturedOutput
Esempio n. 4
0
 def create_initial_estimate(self):
     """Create initial estimate with landmark map.
         Parameters:
             pose_estimates - list, pose estimates by measurements
             landmark_map - list, A map of landmarks and their correspondence
     """
     initial_estimate = gtsam.Values()
     # Initial estimate for landmarks
     for landmark_idx, observation_list in enumerate(self._landmark_map):
         key_point = observation_list[0][1]
         pose_idx = observation_list[0][0]
         pose = self._pose_estimates[pose_idx]
         landmark_3d_point = self.back_projection(key_point, pose,
                                                  self._depth)
         initial_estimate.insert(P(landmark_idx), landmark_3d_point)
     # Filter valid poses
     valid_pose_indices = set()
     for observation_list in self._landmark_map:
         for observation in observation_list:
             pose_idx = observation[0]
             valid_pose_indices.add(pose_idx)
     # Initial estimate for poses
     for pose_idx in valid_pose_indices:
         initial_estimate.insert(X(pose_idx),
                                 self._pose_estimates[pose_idx])
     return initial_estimate
Esempio n. 5
0
    def test_Pose2SLAMExample(self):
        # Assumptions
        #  - All values are axis aligned
        #  - Robot poses are facing along the X axis (horizontal, to the right in images)
        #  - We have full odometry for measurements
        #  - The robot is on a grid, moving 2 meters each step

        # Create graph container and add factors to it
        graph = gtsam.NonlinearFactorGraph()

        # Add prior
        # gaussian for prior
        priorMean = gtsam.Pose2(0.0, 0.0, 0.0)  # prior at origin
        priorNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3,
                                                                0.1]))
        # add directly to graph
        graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))

        # Add odometry
        # general noisemodel for odometry
        odometryNoise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.2, 0.2, 0.1]))
        graph.add(
            gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2.0, 0.0, 0.0),
                                     odometryNoise))
        graph.add(
            gtsam.BetweenFactorPose2(2, 3, gtsam.Pose2(2.0, 0.0, pi / 2),
                                     odometryNoise))
        graph.add(
            gtsam.BetweenFactorPose2(3, 4, gtsam.Pose2(2.0, 0.0, pi / 2),
                                     odometryNoise))
        graph.add(
            gtsam.BetweenFactorPose2(4, 5, gtsam.Pose2(2.0, 0.0, pi / 2),
                                     odometryNoise))

        # Add pose constraint
        model = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
        graph.add(
            gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2),
                                     model))

        # Initialize to noisy points
        initialEstimate = gtsam.Values()
        initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
        initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
        initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
        initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
        initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))

        # Optimize using Levenberg-Marquardt optimization with an ordering from
        # colamd
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
        result = optimizer.optimizeSafely()

        # Plot Covariance Ellipses
        marginals = gtsam.Marginals(graph, result)
        P = marginals.marginalCovariance(1)

        pose_1 = result.atPose2(1)
        self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
Esempio n. 6
0
    def test_factor(self):
        """Check that the InnerConstraint factor leaves the mean unchanged."""
        # Make a graph with two variables, one between, and one InnerConstraint
        # The optimal result should satisfy the between, while moving the other
        # variable to make the mean the same as before.
        # Mean of R and R' is identity. Let's make a BetweenFactor making R21 =
        # R*R*R, i.e. geodesic length is 3 rather than 2.
        graph = gtsam.NonlinearFactorGraph()
        R12 = R.compose(R.compose(R))
        graph.add(gtsam.BetweenFactorRot3(1, 2, R12, MODEL))
        keys = gtsam.KeyVector()
        keys.append(1)
        keys.append(2)
        graph.add(gtsam.KarcherMeanFactorRot3(keys))

        initial = gtsam.Values()
        initial.insert(1, R.inverse())
        initial.insert(2, R)
        expected = Rot3()

        result = gtsam.GaussNewtonOptimizer(graph, initial).optimize()
        actual = gtsam.FindKarcherMean(
            gtsam.Rot3Vector([result.atRot3(1), result.atRot3(2)]))
        self.gtsamAssertEquals(expected, actual)
        self.gtsamAssertEquals(
            R12, result.atRot3(1).between(result.atRot3(2)))
Esempio n. 7
0
    def create_initial_estimate(self, pose_indices):
        """Create initial estimate from ???."""
        wRc = Rot3(1, 0, 0, 0, 0, 1, 0, -1, 0)  # camera to world rotation
        depth = 20

        initial_estimate = gtsam.Values()

        # Create dictionary for initial estimation
        for img_idx, features in enumerate(self._image_features):
            for kp_idx, keypoint in enumerate(features.keypoints):
                if self.image_points[img_idx].kp_3d_exist(kp_idx):
                    landmark_id = self.image_points[img_idx].kp_3d(kp_idx)
                    # Filter invalid landmarks
                    if self._landmark_estimates[
                            landmark_id].seen >= self._min_landmark_seen:
                        key_point = Point2(keypoint[0], keypoint[1])
                        key = P(landmark_id)
                        if not initial_estimate.exists(key):
                            # do back-projection
                            pose = Pose3(wRc,
                                         Point3(0, self.delta_z * img_idx, 2))
                            landmark_3d_point = self.back_projection(
                                key_point, pose, depth)
                            initial_estimate.insert(P(landmark_id),
                                                    landmark_3d_point)

        # Initial estimate for poses
        for idx in pose_indices:
            pose_i = Pose3(wRc, Point3(0, self.delta_z * idx, 2))
            initial_estimate.insert(X(idx), pose_i)

        return initial_estimate
Esempio n. 8
0
def circlePose3(numPoses=8, radius=1.0, symbolChar='\0'):
    """
    circlePose3 generates a set of poses in a circle. This function
    returns those poses inside a gtsam.Values object, with sequential
    keys starting from 0. An optional character may be provided, which
    will be stored in the msb of each key (i.e. gtsam.Symbol).

    We use aerospace/navlab convention, X forward, Y right, Z down
    First pose will be at (R,0,0)
    ^y   ^ X
    |    |
    z-->xZ--> Y  (z pointing towards viewer, Z pointing away from viewer)
    Vehicle at p0 is looking towards y axis (X-axis points towards world y)
    """

    values = gtsam.Values()
    theta = 0.0
    dtheta = 2 * pi / numPoses
    gRo = gtsam.Rot3(
        np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]], order='F'))
    for i in range(numPoses):
        key = gtsam.symbol(symbolChar, i)
        gti = gtsam.Point3(radius * cos(theta), radius * sin(theta), 0)
        oRi = gtsam.Rot3.Yaw(
            -theta)  # negative yaw goes counterclockwise, with Z down !
        gTi = gtsam.Pose3(gRo.compose(oRi), gti)
        values.insert(key, gTi)
        theta = theta + dtheta
    return values
def get_data() -> Tuple[gtsam.Values, List[gtsam.BinaryMeasurementUnit3]]:
    """"Returns global rotations and unit translation directions between 8 cameras
    that lie on a circle and face the center. The poses of 8 cameras are obtained from SFMdata
    and the unit translations directions between some camera pairs are computed from their
    global translations. """
    fx, fy, s, u0, v0 = 50.0, 50.0, 0.0, 50.0, 50.0
    wTc_list = SFMdata.createPoses(gtsam.Cal3_S2(fx, fy, s, u0, v0))
    # Rotations of the cameras in the world frame.
    wRc_values = gtsam.Values()
    # Normalized translation directions from camera i to camera j
    # in the coordinate frame of camera i.
    i_iZj_list = []
    for i in range(0, len(wTc_list) - 2):
        # Add the rotation.
        wRi = wTc_list[i].rotation()
        wRc_values.insert(i, wRi)
        # Create unit translation measurements with next two poses.
        for j in range(i + 1, i + 3):
            # Compute the translation from pose i to pose j, in the world reference frame.
            w_itj = wTc_list[j].translation() - wTc_list[i].translation()
            # Obtain the translation in the camera i's reference frame.
            i_itj = wRi.unrotate(w_itj)
            # Compute the normalized unit translation direction.
            i_iZj = gtsam.Unit3(i_itj)
            i_iZj_list.append(
                gtsam.BinaryMeasurementUnit3(
                    i, j, i_iZj, gtsam.noiseModel.Isotropic.Sigma(3, 0.01)))
    # Add the last two rotations.
    wRc_values.insert(len(wTc_list) - 1, wTc_list[-1].rotation())
    wRc_values.insert(len(wTc_list) - 2, wTc_list[-2].rotation())
    return wRc_values, i_iZj_list
def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
                   wRc_values: gtsam.Values) -> gtsam.Values:
    """Estimate poses given rotations and normalized translation directions between cameras.

    Args:
        i_iZj_list: List of normalized translation direction measurements between camera pairs, 
                    Z here refers to measurements. The measurements are of camera j with reference 
                    to camera i (iZj), in camera i's coordinate frame (i_). iZj represents a unit 
                    vector to j in i's frame and is not a transformation. 
        wRc_values: Rotations of the cameras in the world frame.

    Returns:
        gtsam.Values: Estimated poses.
    """

    # Convert the translation direction measurements to world frame using the rotations.
    w_iZj_list = gtsam.BinaryMeasurementsUnit3()
    for i_iZj in i_iZj_list:
        w_iZj = gtsam.Unit3(
            wRc_values.atRot3(i_iZj.key1()).rotate(i_iZj.measured().point3()))
        w_iZj_list.append(
            gtsam.BinaryMeasurementUnit3(i_iZj.key1(), i_iZj.key2(), w_iZj,
                                         i_iZj.noiseModel()))

    # Remove the outliers in the unit translation directions.
    w_iZj_inliers = filter_outliers(w_iZj_list)

    # Run the optimizer to obtain translations for normalized directions.
    wtc_values = gtsam.TranslationRecovery(w_iZj_inliers).run()

    wTc_values = gtsam.Values()
    for key in wRc_values.keys():
        wTc_values.insert(
            key, gtsam.Pose3(wRc_values.atRot3(key), wtc_values.atPoint3(key)))
    return wTc_values
Esempio n. 11
0
def main():
    """Main runner."""
    # Create an empty nonlinear factor graph
    graph = gtsam.NonlinearFactorGraph()

    # Add a prior on the first point, setting it to the origin
    # A prior factor consists of a mean and a noise model (covariance matrix)
    priorMean = gtsam.Pose3()  # prior at origin
    graph.add(gtsam.PriorFactorPose3(1, priorMean, PRIOR_NOISE))

    # Add GPS factors
    gps = gtsam.Point3(lat0, lon0, h0)
    graph.add(gtsam.GPSFactor(1, gps, GPS_NOISE))
    print("\nFactor Graph:\n{}".format(graph))

    # Create the data structure to hold the initialEstimate estimate to the solution
    # For illustrative purposes, these have been deliberately set to incorrect values
    initial = gtsam.Values()
    initial.insert(1, gtsam.Pose3())
    print("\nInitial Estimate:\n{}".format(initial))

    # optimize using Levenberg-Marquardt optimization
    params = gtsam.LevenbergMarquardtParams()
    optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
    result = optimizer.optimize()
    print("\nFinal Result:\n{}".format(result))
Esempio n. 12
0
    def __init__(self,
                 p,
                 q,
                 r,
                 alphas=np.array([0.001, 0.0001]),
                 sensor_offset=np.zeros(2)):

        # Add noise models
        self.odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(q)
        self.measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(r)

        self.alphas = alphas
        self.sensor_offset = sensor_offset

        # Create graph and initilize newest pose
        self.graph = gtsam.NonlinearFactorGraph()
        self.poses = gtsam.Values()

        # To enumerate all poses and landmarks
        self.kx = 1
        self.kl = 1

        self.landmarks = np.empty(0)

        # Initilize graph with prior
        prior_noise = gtsam.noiseModel.Diagonal.Sigmas(p)
        self.graph.add(
            gtsam.PriorFactorPose2(X(self.kx), gtsam.Pose2(0.0, 0.0, 0.0),
                                   prior_noise))
def init_smoother(request):
    """
    Runs a batch fixed smoother on an agent with two odometry
    sensors that is simply moving along the x axis in constant
    speed.
    """
    global SMOOTHER_BATCH

    # Define a batch fixed lag smoother, which uses
    # Levenberg-Marquardt to perform the nonlinear optimization
    lag = request.lag
    smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)

    new_factors = gtsam.NonlinearFactorGraph()
    new_values = gtsam.Values()
    new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()

    prior_mean = request.prior_mean
    prior_noise = request.prior_noise
    X1 = 0
    new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
    new_values.insert(X1, prior_mean)
    new_timestamps.insert(_timestamp_key_value(X1, 0.0))

    SMOOTHER_BATCH = smoother_batch
    SMOOTHER_BATCH.update(new_factors, new_values, new_timestamps)

    return X1
Esempio n. 14
0
    def test_jacobian(self):
        """Evaluate jacobian at optical axis"""
        obj_point_on_axis = np.array([0, 0, 1])
        img_point = np.array([0.0, 0.0])
        pose = gtsam.Pose3()
        camera = gtsam.Cal3Unified()
        state = gtsam.Values()
        camera_key, pose_key, landmark_key = K(0), P(0), L(0)
        state.insert_cal3unified(camera_key, camera)
        state.insert_point3(landmark_key, obj_point_on_axis)
        state.insert_pose3(pose_key, pose)
        g = gtsam.NonlinearFactorGraph()
        noise_model = gtsam.noiseModel.Unit.Create(2)
        factor = gtsam.GeneralSFMFactor2Cal3Unified(img_point, noise_model,
                                                    pose_key, landmark_key,
                                                    camera_key)
        g.add(factor)
        f = g.error(state)
        gaussian_factor_graph = g.linearize(state)
        H, z = gaussian_factor_graph.jacobian()
        self.assertAlmostEqual(f, 0)
        self.gtsamAssertEquals(z, np.zeros(2))
        self.gtsamAssertEquals(H @ H.T, 4 * np.eye(2))

        Dcal = np.zeros((2, 10), order='F')
        Dp = np.zeros((2, 2), order='F')
        camera.calibrate(img_point, Dcal, Dp)

        self.gtsamAssertEquals(
            Dcal,
            np.array([[0., 0., 0., -1., 0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., -1., 0., 0., 0., 0., 0.]]))
        self.gtsamAssertEquals(Dp, np.array([[1., -0.], [-0., 1.]]))
Esempio n. 15
0
    def __init__(self, relinearizeThreshold=0.01, relinearizeSkip=1):
        """ priorMean and priorCov should be in 1 dimensional array
        """

        # init the graph
        self.graph = gtsam.NonlinearFactorGraph()

        # init the iSam2 solver
        parameters = gtsam.ISAM2Params()
        parameters.setRelinearizeThreshold(relinearizeThreshold)
        parameters.setRelinearizeSkip(relinearizeSkip)

        self.isam = gtsam.ISAM2(parameters)

        # init container for initial values
        self.initialValues = gtsam.Values()

        # setting the current position
        self.currentKey = 1

        # current estimate
        self.currentEst = False

        self.currentPose = [0, 0, 0]

        return
Esempio n. 16
0
 def test_perturbPose2(self):
     """Test perturbPose2."""
     values = gtsam.Values()
     values.insert(0, gtsam.Pose2())
     values.insert(1, gtsam.Point2(1, 1))
     gtsam.utilities.perturbPose2(values, 1, 1)
     self.assertTrue(values.atPose2(0) != gtsam.Pose2())
Esempio n. 17
0
    def log_pdf_value(self, measurement, point_x, point_xo):
        """

        :type point_x: gtsam.Pose3
        :type point_xo: gtsam.Pose3
        :type measurement: gtsam.Pose3
        """

        meas_x = measurement[2] * np.cos(measurement[0] / 180 * np.pi) \
                 * np.cos(measurement[1] / 180 * np.pi)
        meas_y = measurement[2] * np.sin(measurement[0] / 180 * np.pi) \
                 * np.cos(measurement[1] / 180 * np.pi)
        meas_z = measurement[2] * np.sin(measurement[1] / 180 * np.pi)

        pose_meas = gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0),
                                np.array([meas_x, meas_y, meas_z]))

        # Create an auxilary factor and compute his log-pdf value (without the normalizing constant)
        aux_factor = gtsam.BetweenFactorPose3(1, 2, pose_meas,
                                              self.model_noise)
        poses = gtsam.Values()
        poses.insert(1, point_x)
        poses.insert(2, point_xo)

        return aux_factor.error(poses)
Esempio n. 18
0
    def step5_add_odometry_and_landmark_observations():
        # Create an empty nonlinear factor graph.
        graph = gtsam.NonlinearFactorGraph()

        # Create keys for the involved variables.
        X2 = X(2)
        X3 = X(3)
        L2 = L(2)

        # Update the list with the new variable keys.
        pose_variables.append(X3)
        landmark_variables.append(L2)

        # Add the odometry measurement.
        odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.1, 0.1, 0.1]))
        graph.add(
            gtsam.BetweenFactorPose2(X2, X3, gtsam.Pose2(2.0, 0.0, 0.0),
                                     odometry_noise))

        # Add the landmark observation.
        measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.05, 0.1]))
        graph.add(
            gtsam.BearingRangeFactor2D(X3, L2, gtsam.Rot2.fromDegrees(90), 2.0,
                                       measurement_noise))

        # Set initial estimates only for the new variables.
        initial_estimate = gtsam.Values()
        initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
        initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))

        # Update ISAM2 with the new factor graph.
        isam.update(graph, initial_estimate)
Esempio n. 19
0
 def test_extractPoint3(self):
     """Test extractPoint3."""
     initial = gtsam.Values()
     point3 = gtsam.Point3(0.0, 0.1, 0.0)
     initial.insert(1, gtsam.Pose2(0.0, 0.1, 0.1))
     initial.insert(2, point3)
     np.testing.assert_equal(gtsam.utilities.extractPoint3(initial),
                             point3.reshape(-1, 3))
Esempio n. 20
0
 def test_perturbPoint3(self):
     """Test perturbPoint3."""
     values = gtsam.Values()
     point3 = gtsam.Point3(0, 0, 0)
     values.insert(0, gtsam.Pose2())
     values.insert(1, point3)
     gtsam.utilities.perturbPoint3(values, 1)
     self.assertTrue(not np.allclose(values.atPoint3(1), point3))
Esempio n. 21
0
 def test_perturbPoint2(self):
     """Test perturbPoint2."""
     values = gtsam.Values()
     values.insert(0, gtsam.Pose3())
     values.insert(1, gtsam.Point2(1, 1))
     gtsam.utilities.perturbPoint2(values, 1.0)
     self.assertTrue(
         not np.allclose(values.atPoint2(1), gtsam.Point2(1, 1)))
Esempio n. 22
0
 def test_extractPose3(self):
     """Test extractPose3."""
     initial = gtsam.Values()
     pose3 = np.asarray([1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0.])
     initial.insert(1, gtsam.Pose2(0.0, 0.1, 0.1))
     initial.insert(2, gtsam.Pose3())
     np.testing.assert_allclose(gtsam.utilities.extractPose3(initial),
                                pose3.reshape(-1, 12))
Esempio n. 23
0
 def __init__(self, IMU_PARAMS=None, BIAS_COVARIANCE=None):
     """
     Define factor graph parameters (e.g. noise, camera calibrations, etc) here
     """
     self.graph = gtsam.NonlinearFactorGraph()
     self.initial_estimate = gtsam.Values()
     self.IMU_PARAMS = IMU_PARAMS
     self.BIAS_COVARIANCE = BIAS_COVARIANCE
    def add_mr_object_measurement(self,
                                  stack,
                                  class_realization,
                                  new_input_object_prior=None,
                                  new_input_object_covariance=None):
        graph_add = gtsam.NonlinearFactorGraph()
        initial_add = gtsam.Values()

        idx = 0
        for obj in stack:

            cov_noise_model = stack[obj]['covariance']
            exp_gtsam = gtsam.Pose3(
                gtsam.Rot3.Ypr(stack[obj]['expectation'][2],
                               stack[obj]['expectation'][1],
                               stack[obj]['expectation'][0]),
                gtsam.Point3(stack[obj]['expectation'][3],
                             stack[obj]['expectation'][4],
                             stack[obj]['expectation'][5]))

            pose_rotation_matrix = exp_gtsam.rotation().matrix()
            cov_noise_model_rotated = self.rotate_cov_6x6(
                cov_noise_model, np.transpose(pose_rotation_matrix))
            cov_noise_model_rotated = gtsam.noiseModel.Gaussian.Covariance(
                cov_noise_model_rotated)
            #updating the graph
            self.graph.add(
                gtsam.PriorFactorPose3(self.XO(obj), exp_gtsam,
                                       cov_noise_model_rotated))
            graph_add.add(
                gtsam.PriorFactorPose3(self.XO(obj), exp_gtsam,
                                       cov_noise_model_rotated))

            self.prop_belief.add(
                gtsam.PriorFactorPose3(self.XO(obj), exp_gtsam,
                                       cov_noise_model_rotated))

            if self.prop_initial.exists(self.XO(obj)) is False:
                self.prop_initial.insert(
                    self.XO(obj), gtsam.Pose3(gtsam.Pose2(0.0, 0.0, 0.0)))

            # if obj in new_input_object_prior and obj not in self.classRealization:
            #     self.graph.add(gtsam.PriorFactorPose3(self.XO(obj), new_input_object_prior[obj],
            #                                           new_input_object_covariance[obj]))
            #     self.prop_belief.add(gtsam.PriorFactorPose3(self.XO(obj), new_input_object_prior[obj],
            #                                                 new_input_object_covariance[obj]))
            self.classRealization[obj] = class_realization[obj]

            if self.isam.value_exists(self.XO(obj)) is False:
                initial_add.insert(self.XO(obj),
                                   gtsam.Pose3(gtsam.Pose2(0.0, 0.0, 0.0)))

            idx += 1

            if stack[obj]['weight'] > -322:
                self.logWeight += stack[obj]['weight']  # + 150
            else:
                self.logWeight = -math.inf
Esempio n. 25
0
    def estimate_global(self):
        np.random.seed(2)
        n0 = 0.000001
        n03 = np.array([n0, n0, n0])
        nNoiseFactor3 = np.array(
            [0.2, 0.2,
             0.2])  # TODO: something about floats and major row? check cython

        # Create an empty nonlinear factor graph
        graph = gtsam.NonlinearFactorGraph()

        # Add a prior on the first pose, setting it to the origin
        priorMean = self.odom_global[0]
        priorNoise = gtsam.noiseModel_Diagonal.Sigmas(n03)
        graph.add(gtsam.PriorFactorPose2(self.X(1), priorMean, priorNoise))

        # Add odometry factors
        odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(nNoiseFactor3)
        for i, pose in enumerate(self.odom_relative):
            graph.add(
                gtsam.BetweenFactorPose2(self.X(i + 1), self.X(i + 2), pose,
                                         odometryNoise))

        # Add visual factors
        visualNoise = gtsam.noiseModel_Diagonal.Sigmas(nNoiseFactor3)
        for i, pose in enumerate(self.visual_relative):
            graph.add(
                gtsam.BetweenFactorPose2(self.X(i + 1), self.X(i + 2), pose,
                                         visualNoise))

        # set initial guess to odometry estimates
        initialEstimate = gtsam.Values()
        for i, pose in enumerate(self.odom_global):
            initialEstimate.insert(self.X(i + 1), pose)

        # optimize using Levenberg-Marquardt optimization
        params = gtsam.LevenbergMarquardtParams()
        params.setVerbosityLM("SUMMARY")
        # gtsam_quadrics.setMaxIterations(params, iter)
        # gtsam_quadrics.setRelativeErrorTol(params, 1e-8)
        # gtsam_quadrics.setAbsoluteErrorTol(params, 1e-8)

        # graph.print_('graph')
        # initialEstimate.print_('initialEstimate ')
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate,
                                                      params)

        # parameters = gtsam.GaussNewtonParams()
        # parameters.relativeErrorTol = 1e-8
        # parameters.maxIterations = 300
        # optimizer = gtsam.GaussNewtonOptimizer(graph, initialEstimate, parameters)

        result = optimizer.optimize()

        # result.print_('result ')
        # self.draw_trajectories([self.odom_global, self.visual_global], ['b', 'r'], 2)

        return self.unwrap_results(result)
Esempio n. 26
0
    def test_SFMExample(self):
        options = generator.Options()
        options.triangle = False
        options.nrCameras = 10

        [data, truth] = generator.generate_data(options)

        measurementNoiseSigma = 1.0
        pointNoiseSigma = 0.1
        poseNoiseSigmas = np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1])

        graph = gtsam.NonlinearFactorGraph()

        # Add factors for all measurements
        measurementNoise = Isotropic.Sigma(2, measurementNoiseSigma)
        for i in range(len(data.Z)):
            for k in range(len(data.Z[i])):
                j = data.J[i][k]
                graph.add(gtsam.GenericProjectionFactorCal3_S2(
                    data.Z[i][k], measurementNoise,
                    X(i), P(j), data.K))

        posePriorNoise = Diagonal.Sigmas(poseNoiseSigmas)
        graph.add(gtsam.PriorFactorPose3(X(0),
                                   truth.cameras[0].pose(), posePriorNoise))
        pointPriorNoise = Isotropic.Sigma(3, pointNoiseSigma)
        graph.add(gtsam.PriorFactorPoint3(P(0),
                                    truth.points[0], pointPriorNoise))

        # Initial estimate
        initialEstimate = gtsam.Values()
        for i in range(len(truth.cameras)):
            pose_i = truth.cameras[i].pose()
            initialEstimate.insert(X(i), pose_i)
        for j in range(len(truth.points)):
            point_j = truth.points[j]
            initialEstimate.insert(P(j), point_j)

        # Optimization
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
        for i in range(5):
            optimizer.iterate()
        result = optimizer.values()

        # Marginalization
        marginals = gtsam.Marginals(graph, result)
        marginals.marginalCovariance(P(0))
        marginals.marginalCovariance(X(0))

        # Check optimized results, should be equal to ground truth
        for i in range(len(truth.cameras)):
            pose_i = result.atPose3(X(i))
            self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)

        for j in range(len(truth.points)):
            point_j = result.atPoint3(P(j))
            self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
Esempio n. 27
0
 def test_insertBackprojections(self):
     """Test insertBackprojections."""
     values = gtsam.Values()
     cam = gtsam.PinholeCameraCal3_S2()
     gtsam.utilities.insertBackprojections(
         values, cam, [0, 1, 2], np.asarray([[20, 30, 40], [20, 30, 40]]),
         10)
     np.testing.assert_allclose(values.atPoint3(0),
                                gtsam.Point3(200, 200, 10))
Esempio n. 28
0
    def __init__(self):
        self.gtsam_graph = gtsam.NonlinearFactorGraph()
        self.factor_edges = {}  # adjacency list (dict)

        # Variables
        self.values = gtsam.Values()
        self.vars = {}

        self.n_variables = 0
Esempio n. 29
0
    def test_extractPose2(self):
        """Test extractPose2."""
        initial = gtsam.Values()
        pose2 = np.asarray((0.0, 0.1, 0.1))

        initial.insert(1, gtsam.Pose2(*pose2))
        initial.insert(2, gtsam.Point3(0.0, 0.1, 0.0))
        np.testing.assert_allclose(gtsam.utilities.extractPose2(initial),
                                   pose2.reshape(-1, 3))
Esempio n. 30
0
 def test_allPose3s(self):
     """Test allPose3s."""
     initial = gtsam.Values()
     initial.insert(0, gtsam.Pose3())
     initial.insert(2, gtsam.Point2(1, 1))
     initial.insert(1, gtsam.Pose3())
     initial.insert(3, gtsam.Point3(1, 2, 3))
     result = gtsam.utilities.allPose3s(initial)
     self.assertEqual(result.size(), 2)