Esempio n. 1
0
    def test_constructor(self):
        """Test various constructors."""
        keys = DiscreteKeys()
        keys.push_back(X)
        f = DecisionTreeFactor(keys, "0.4 0.6")
        expected = DiscreteDistribution(f)

        actual = DiscreteDistribution(X, "2/3")
        self.gtsamAssertEquals(actual, expected)

        actual2 = DiscreteDistribution(X, [0.4, 0.6])
        self.gtsamAssertEquals(actual2, expected)
Esempio n. 2
0
    def test_markdown(self):
        """Test the _repr_markdown_ method."""

        prior = DiscreteDistribution(X, "2/3")
        expected = " *P(0):*\n\n" \
            "|0|value|\n" \
            "|:-:|:-:|\n" \
            "|0|0.4|\n" \
            "|1|0.6|\n" \

        actual = prior._repr_markdown_()
        self.assertEqual(actual, expected)
Esempio n. 3
0
    def test_Asia(self):
        """Test full Asia example."""

        asia = DiscreteBayesNet()
        asia.add(Asia, "99/1")
        asia.add(Smoking, "50/50")

        asia.add(Tuberculosis, [Asia], "99/1 95/5")
        asia.add(LungCancer, [Smoking], "99/1 90/10")
        asia.add(Bronchitis, [Smoking], "70/30 40/60")

        asia.add(Either, [Tuberculosis, LungCancer], "F T T T")

        asia.add(XRay, [Either], "95/5 2/98")
        asia.add(Dyspnea, [Either, Bronchitis], "9/1 2/8 3/7 1/9")

        # Convert to factor graph
        fg = DiscreteFactorGraph(asia)

        # Create solver and eliminate
        ordering = Ordering()
        for j in range(8):
            ordering.push_back(j)
        chordal = fg.eliminateSequential(ordering)
        expected2 = DiscreteDistribution(Bronchitis, "11/9")
        self.gtsamAssertEquals(chordal.at(7), expected2)

        # solve
        actualMPE = fg.optimize()
        expectedMPE = DiscreteValues()
        for key in [
                Asia, Dyspnea, XRay, Tuberculosis, Smoking, Either, LungCancer,
                Bronchitis
        ]:
            expectedMPE[key[0]] = 0
        self.assertEqual(list(actualMPE.items()), list(expectedMPE.items()))

        # Check value for MPE is the same
        self.assertAlmostEqual(asia(actualMPE), fg(actualMPE))

        # add evidence, we were in Asia and we have dyspnea
        fg.add(Asia, "0 1")
        fg.add(Dyspnea, "0 1")

        # solve again, now with evidence
        actualMPE2 = fg.optimize()
        expectedMPE2 = DiscreteValues()
        for key in [XRay, Tuberculosis, Either, LungCancer]:
            expectedMPE2[key[0]] = 0
        for key in [Asia, Dyspnea, Smoking, Bronchitis]:
            expectedMPE2[key[0]] = 1
        self.assertEqual(list(actualMPE2.items()), list(expectedMPE2.items()))

        # now sample from it
        chordal2 = fg.eliminateSequential(ordering)
        actualSample = chordal2.sample()
        self.assertEqual(len(actualSample), 8)
Esempio n. 4
0
    def test_multiplication(self):
        """Test whether multiplication works with overloading."""
        v0 = (0, 2)
        v1 = (1, 2)
        v2 = (2, 2)

        # Multiply with a DiscreteDistribution, i.e., Bayes Law!
        prior = DiscreteDistribution(v1, [1, 3])
        f1 = DecisionTreeFactor([v0, v1], "1 2 3 4")
        expected = DecisionTreeFactor([v0, v1], "0.25 1.5 0.75 3")
        self.gtsamAssertEquals(DecisionTreeFactor(prior) * f1, expected)
        self.gtsamAssertEquals(f1 * prior, expected)

        # Multiply two factors
        f2 = DecisionTreeFactor([v1, v2], "5 6 7 8")
        actual = f1 * f2
        expected2 = DecisionTreeFactor([v0, v1, v2], "5 6 14 16 15 18 28 32")
        self.gtsamAssertEquals(actual, expected2)
Esempio n. 5
0
 def test_sample(self):
     prior = DiscreteDistribution(X, "2/3")
     actual = prior.sample()
     self.assertIsInstance(actual, int)
Esempio n. 6
0
 def test_pmf(self):
     prior = DiscreteDistribution(X, "2/3")
     expected = np.array([0.4, 0.6])
     np.testing.assert_allclose(expected, prior.pmf())
Esempio n. 7
0
 def test_operator(self):
     prior = DiscreteDistribution(X, "2/3")
     self.assertAlmostEqual(prior(0), 0.4)
     self.assertAlmostEqual(prior(1), 0.6)