Esempio n. 1
0
def plotWindow(wavelength, signal):
    """
    Plots the loaded spectra for visual inspection.
    """
    
    pyplot.figure("Loaded spectra")
    pyplot.plot(wavelength, signal)
    pyplot.show()
Esempio n. 2
0
 def plotArray(self, arraylist):
     print("Plot Array Called")
     tmp = self.arrayData[arraylist.currentRow()]
     plt.figure(self.arrayName[arraylist.currentRow()])
     for x in range(tmp.columns.size):
         # add mask to avoid nan data
         mask = np.isfinite(tmp.iloc[:, x].values)
         plt.plot(tmp.index[mask], tmp.iloc[:, x].values[mask], "b-")
     plt.show()
Esempio n. 3
0
 def plotCSV(self, csvlist):
     # do plot csv figure
     # After right click on the menu
     tmp = self.csvData[csvlist.currentRow()]
     plt.figure(self.csvName[csvlist.currentRow()])
     # add mask to avoid nan
     for x in range(tmp.columns.size):
         if x == 0:
             mask = np.isfinite(tmp.iloc[:, x].values)
             print(mask)
             plt.plot(tmp.index[mask], tmp.iloc[:, x].values[mask], "b-")
         elif x == 1:
             mask = np.isfinite(tmp.iloc[:, x].values)
             print(mask)
             plt.plot(tmp.index[mask], tmp.iloc[:, x].values[mask], "r-")
         else:
             plt.plot(tmp.index, tmp.iloc[:, x].values, "g-")
     plt.show()
Esempio n. 4
0
def varexp(line):
    """
    Spyder's variable explorer magic

    Used to generate plots, histograms and images of the variables displayed
    on it.
    """
    ip = get_ipython()       #analysis:ignore
    funcname, name = line.split()
    try:
        import guiqwt.pyplot as pyplot
    except:
        import matplotlib.pyplot as pyplot
    __fig__ = pyplot.figure();
    __items__ = getattr(pyplot, funcname[2:])(ip.user_ns[name])
    pyplot.show()
    del __fig__, __items__
Esempio n. 5
0
def MNIST_Plot_Image_Pairs(Img_Orig, Img_Recon, **kwargs):
    # This function plots pairs of MNIST images from two matrices in a grid
    # by reshaping 784x1 column vectors from supplied matrices into pairs of
    # two 28x28 images concatenated side by side.
    #                 Inputs
    # ============================================================
    # Img_Orig : 784 x N_Plots    First image
    # Img_Recon: 784 x N_Plots    Second image
    #                Optional inputs
    # N_Horiz  :   integer        Number of pairs of images on horizonal axis
    # N_Vert   :   integer        Number of pairs of images on vertical axis
    # str      :   string         Figure title
    #
    #                 Output
    # ============================================================
    # A figure with pairs of images

    if Img_Orig.shape != Img_Recon.shape:
        print('Error: Dimension mismatch!')

    if Img_Orig.shape[0] != 784:
        print('Error: Weight matrix does not have 784 rows!')

    if "str" in kwargs:
        str = kwargs["str"]
    else:
        str = 'MNIST: Pairs of images'

    # Number of images to reconstruct and plot
    N_Plots = Img_Orig.shape[1]

    if ("N_Horiz" in kwargs) and ("N_Vert" in kwargs):
        N_Horiz = kwargs["N_Horiz"]
        N_Vert = kwargs["N_Vert"]
        if N_Horiz * N_Vert == N_Plots:
            Do_Init = False
        else:
            Do_Init = True
    else:
        Do_Init = True

    if Do_Init == True:
        N_Horiz = int(np.floor(np.sqrt(N_Plots)))
        N_Vert = int(np.ceil(np.sqrt(N_Plots)))
        if N_Horiz * N_Vert < N_Plots:
            N_Horiz = N_Horiz + 1

    # Vertical padding
    V_Pad = 2  # pixels
    # Horizontal padding
    H_Pad = 2  # pixels
    # Number of pixels in width (height as well, this is a square image)
    N = 28  # pixels
    # Allocate memory for the combined image
    A = np.zeros([
        N * N_Horiz + H_Pad * (N_Horiz - 1),
        2 * N * N_Vert + V_Pad * (N_Vert - 1)
    ])
    # Counter for the image sample to be plotted
    cnt = 0
    for i in range(N_Horiz):
        for j in range(N_Vert):
            # Calculating image position on the grid
            idx_H1 = i * (N + H_Pad)
            idx_H2 = (i + 1) * (N + H_Pad) - H_Pad
            idx_V1 = j * (2 * N + V_Pad)
            idx_V2 = (j + 1) * (2 * N + V_Pad) - V_Pad
            # Reshape a 784x1 vector into a 28x28 image. Do the same operation for the reconstructed image
            A[idx_H1:idx_H2, idx_V1:idx_V2] = np.concatenate([
                Img_Orig[:, cnt].reshape(N, N, order='F'),
                Img_Recon[:, cnt].reshape(N, N, order='F')
            ],
                                                             axis=1)
            cnt = cnt + 1
            if cnt == N_Plots:
                break
    plt.figure(str)
    plt.gray()  # colormap
    plt.imshow(A)
    plt.show()