Esempio n. 1
0
    def read(cls, subsys, filename):
        """
        read from a file

        Parameters
        ----------
        subsys : `str`
            Channel subsystem
        filename : `str`
            File to read from
        """
        # open file
        if isinstance(filename, str):
            f = h5py.File(filename, 'r')
        else:
            f = filename
        chandict = {subsys: f[subsys].keys()}
        darm_channel = f['psd1'].keys()[0].split()[0].strip()
        ss = PEMSubsystem(subsys, darm_channel, chandict)
        psd1 = FrequencySeries.read(f['psd1'][f['psd1'].keys()[0]])
        for channel in chandict[subsys]:
            N = int(f[subsys][channel]['metadata'][0, 1])
            st = int(f[subsys][channel]['metadata'][1, 1])
            et = int(f[subsys][channel]['metadata'][2, 1])
            csd12 = FrequencySeries.read(f[subsys][channel]['csd mean'])
            psd2 = FrequencySeries.read(f[subsys][channel]['%s mean' %
                                                           channel])
            ss[channel] = PEMCoherenceSegment(darm_channel, channel, csd12,
                                              psd1, psd2, N, st, et)
        ss.failed_channels = f['failed_channels'][:]
        f.close()
        return ss
Esempio n. 2
0
def mybode(*args, **kwargs):
    freq = kwargs.pop('freq', None)
    kwargs['omega'] = freq * 2.0 * np.pi
    mag, phase, omega = bode(*args, **kwargs)
    phase = degwrap(phase)
    mag = FrequencySeries(mag, frequencies=freq)
    phase = FrequencySeries(phase, frequencies=freq)
    return mag, phase
Esempio n. 3
0
    def test_read_ligolw(self):
        with tempfile.NamedTemporaryFile(mode='w+') as fobj:
            fobj.write(LIGO_LW_ARRAY)
            array = FrequencySeries.read(
                fobj, 'psd', match={'channel': 'X1:TEST-CHANNEL_1'})
            utils.assert_array_equal(array, list(range(1, 11)) / units.Hz)
            utils.assert_array_equal(array.frequencies,
                                     list(range(10)) * units.Hz)
            assert numpy.isclose(array.epoch.gps, 1000000000)  # precision gah!
            assert array.unit == units.Hz**-1

            array2 = FrequencySeries.read(
                fobj, 'psd', match={'channel': 'X1:TEST-CHANNEL_2'})
            assert array2.epoch is None

            # assert errors
            with pytest.raises(ValueError):
                FrequencySeries.read(fobj, 'blah')
            with pytest.raises(ValueError):
                FrequencySeries.read(fobj, 'psd')
            with pytest.raises(ValueError):
                FrequencySeries.read(fobj,
                                     'psd',
                                     match={
                                         'channel': 'X1:TEST-CHANNEL_1',
                                         'blah': 'blah'
                                     })
Esempio n. 4
0
def create_matrix_from_file(coh_file, channels):
    """
    Creates coherence matrix from data that's in a file.
    Used typically as helper function for plotting

    Parameters
    ----------
    coh_file : str
        File containing coherence data
    channels : list (str)
        channels to plot

    Returns
    -------
    coh_matrix : Spectrogram object
        coherence matrix in form of spectrogram object
        returns automatically in terms of coherence SNRr -
        coherence * N.
        (not actually a spectrogram, though)
    frequencies : numpy array
        numpy array of frequencies associated with coherence matrix
    labels : list (str)
        labels for coherence matrix
    N : int
        Number of time segment used to create coherence spectra
    """
    labels = []
    counter = 0
    f = h5py.File(coh_file, 'r')
    # get number of averages
    N = f['info'].value
    channels = f['psd2s'].keys()
    failed_channels = f['failed_channels'].value
    print failed_channels
    First = 1
    for channel in channels:
        if First:
            # initialize matrix!
            darm_psd = FrequencySeries.from_hdf5(
                f['psd1'][f['psd1'].keys()[0]])
            First = 0
            coh_matrix = np.zeros((darm_psd.size, len(channels)))
        if channel in failed_channels:
            continue
        data = FrequencySeries.from_hdf5(f['coherences'][channel])
        labels.append(channel[3:-3].replace('_', '-'))
        coh_matrix[:data.size, counter] = data
        counter += 1
    coh_matrix = Spectrogram(coh_matrix * N)
    return coh_matrix, darm_psd.frequencies.value, labels, N
def _percentile(axis, pctl=50, unit='um', suffix='', _dir='', **kwargs):
    fname = './data2/{3}/{0}_{1}.hdf5'.format(axis, pctl, suffix, _dir)
    model = kwargs.pop('model', None)
    _asd = FrequencySeries.read(fname)**0.5
    if model == '120QA':
        amp = 10**(30.0 / 20.0)
    elif model == 'compact':
        amp = 10**(45.0 / 20.0)
    seis = Trillium(model)
    v2vel = seis.v2vel
    c2v = 20.0 / 2**15
    _asd = v2vel(_asd) * c2v / amp * 1e6
    if unit == 'um':
        asd = _asd / (2.0 * np.pi * _asd.frequencies.value)
        #asd.write('./LongTerm_{0}_{1}_DISP.txt'.format(axis,pctl),format='txt')
    elif unit == 'm':
        asd = _asd / (2.0 * np.pi * _asd.frequencies.value) * 1e-6
        asd.write('./{0}_{1}_DISP.txt'.format(axis, pctl), format='txt')
    elif unit == 'um/sec':
        asd = _asd
        asd.write('./{0}_{1}_VELO.txt'.format(axis, pctl), format='txt')
    elif unit == 'um/sec/sec':
        asd = _asd * (2.0 * np.pi * _asd.frequencies.value)
        #asd.write('./LongTerm_{0}_{1}_ACC.txt'.format(axis,pctl),format='txt')
    elif unit == 'm/sec/sec':
        asd = _asd * (2.0 * np.pi * _asd.frequencies.value) * 1e-6
    else:
        raise ValueError('!!1', unit)
    return asd
Esempio n. 6
0
    def comb_finder(self, offsets, comb_widths, cutoff=None):
        """
        Parameters
        ----------
        offsets : `int`
        comb_widths : `int`
        cutoff : `bool`, optional

        Returns
        -------
        :py:class:`CoherenceCombMatrix` object
        """
        comb_mat = np.zeros((len(offsets), len(comb_widths)))
        likelihood_mat = np.zeros((len(offsets), len(comb_widths)))
        f0 = self.psd1.frequencies[0].value
        df = self.psd1.df.value
        coh = FrequencySeries(self.get_coh(cutoff=cutoff),
                              frequencies=self.psd1.frequencies)
        for ii, offset in enumerate(offsets):
            start_idx = max(0, ((offset - f0) / df))
            for jj, width in enumerate(comb_widths):
                mask = np.zeros(self.psd1.size, dtype=bool)
                comb_idx_width = width / np.float(df)
                mask[start_idx::comb_idx_width] = True
                comb_mat[ii, jj] = self.sum_coh(mask, cutoff=cutoff)
                likelihood_mat[ii, jj] = stats.gamma.logpdf(
                    self.N * self.sum_coh(mask, cutoff=cutoff),
                    np.sum(np.int_(mask))) * self.N
        return CoherenceCombMatrix(comb_mat, likelihood_mat, offsets,
                                   comb_widths, coh)
Esempio n. 7
0
def _get_extended_metadata(h5group):
    """Extract the extended metadata for a PyCBC table in HDF5

    This method packs non-table-column datasets in the given h5group into
    a metadata `dict`

    Returns
    -------
    meta : `dict`
       the metadata dict
    """
    meta = dict()

    # get PSD
    try:
        psd = h5group['psd']
    except KeyError:
        pass
    else:
        from gwpy.frequencyseries import FrequencySeries
        meta['psd'] = FrequencySeries(
            psd[:], f0=0, df=psd.attrs['delta_f'], name='pycbc_live')

    # get everything else
    for key in META_COLUMNS - {'psd'}:
        try:
            value = h5group[key][:]
        except KeyError:
            pass
        else:
            meta[key] = value

    return meta
Esempio n. 8
0
    def load_strain_data(self, cache=True):
        """
        Load the strain data for the event

        If it doesn't exist already, then it will be downloaded
        into the strain_data folder

        INPUTS
        ------
        cache: bool
            if True, then store local copy of strain data
            passed to pesummary StrainData.fetch_open_data
        """
        self.data = {}
        self.data_w = {}
        for IFO in self.IFOs:
            # download public strain data
            print("Downloading strain data for " + IFO)
            self.data[IFO] = StrainData.fetch_open_data(IFO,
                                                        self.t_start,
                                                        self.t_end,
                                                        cache=cache)

            # unpack PSD into FrequencySeries ASD object
            fS = np.array(self.psd[IFO])
            asd = FrequencySeries(np.sqrt(fS[:, 1]), frequencies=fS[:, 0])

            # whitened strain
            self.data_w[IFO] = self.data[IFO].whiten(asd=asd)
Esempio n. 9
0
def tf(sys,omega):
    mag, phase, omega = matlab.bode(sys,omega,Plot=False)
    mag = np.squeeze(mag)
    phase = np.squeeze(phase)
    G = mag*np.exp(1j*phase)
    freq = omega/(2.0*np.pi)
    hoge = FrequencySeries(G,frequencies=freq)
    return hoge
Esempio n. 10
0
def inner_product(data1,data2):
    assert data1.duration==data2.duration
    srate1=data1.sample_rate.value
    srate2=data2.sample_rate.value
    fdata1=rfft(sig.hann(len(data1))*data1.detrend().value)
    fdata2=rfft(sig.hann(len(data2))*data2.detrend().value)
    max_idx=min(len(fdata1),len(fdata2))
    return FrequencySeries(fdata1[:max_idx]*fdata2.conjugate()[:max_idx],
                            df=1./data1.duration)
Esempio n. 11
0
def read(fname):
    try:
        data = FrequencySeries.read(fname, format='hdf5')
    except IOError as ioe:
        print(ioe)
        exit()
    else:
        pass

    return data
Esempio n. 12
0
def avg_freq_bins(fdata,new_df):
    nyquist=(len(fdata)-1)*fdata.df.value
    new_flen=1+int(nyquist/float(new_df))
    binlen=int(new_df/float(fdata.df.value))
    win=sig.hann(2*binlen)
    win/=np.sum(win)
    result=np.zeros(new_flen,dtype=fdata.dtype)
    for idx in range(1,new_flen-1):
        result[idx]=np.sum(win*fdata.value[binlen*(idx-1):binlen*(idx+1)])
    return FrequencySeries(result,df=new_df,channel=fdata.channel,
                            name=fdata.name,epoch=fdata.epoch)
Esempio n. 13
0
    def test_inject(self):
        # create a timeseries out of an array of zeros
        df, nyquist = 1, 2048
        data = FrequencySeries(numpy.zeros(df*nyquist + 1), f0=0,
                               df=df, unit='')

        # create a second timeseries to inject into the first
        w_nyquist = 1024
        sig = FrequencySeries(numpy.ones(df*w_nyquist + 1), f0=0,
                              df=df, unit='')

        # test that we recover this waveform when we add it to data,
        # and that the operation does not change the original data
        new_data = data.inject(sig)
        assert new_data.unit == data.unit
        assert new_data.size == data.size
        ind, = new_data.value.nonzero()
        assert len(ind) == sig.size
        utils.assert_allclose(new_data.value[ind], sig.value)
        utils.assert_allclose(data.value, numpy.zeros(df*nyquist + 1))
Esempio n. 14
0
def plot_spectrum(fd_psd):
    '''
    Plot power spectral density
    '''
    plot = FrequencySeriesPlot()
    ax = plot.gca()
    ax.plot(FrequencySeries(fd_psd, df=fd_psd.delta_f))
    #plt.ylim(1e-10, 1e-3)
    plt.xlim(0.1, 500)
    plt.loglog()
    plt.savefig("psd.png", dpi=300, transparent=True)
    plt.close()
Esempio n. 15
0
 def test_add_arrays(self):
     ts = TimeSeries([1, 2, 3, 4])
     fs = FrequencySeries([1, 2, 3, 4])
     fig = self.FIGURE_CLASS()
     self.assertEqual(len(fig.axes), 0)
     fig.add_timeseries(ts)
     self.assertEqual(len(fig.axes), 1)
     self.assertIsInstance(fig.axes[0], TimeSeriesAxes)
     fig.add_frequencyseries(fs)
     self.assertEqual(len(fig.axes), 2)
     self.assertIsInstance(fig.axes[1], FrequencySeriesAxes)
     fig.close()
Esempio n. 16
0
 def dataprod(cls, prod):
     super(_TestFrequencyDomainProduct, cls).dataprod(prod)
     fftlength = prod.args.secpfft
     for ts in prod.timeseries:
         nsamp = int(fftlength * 512 / 2.) + 1
         fs = FrequencySeries(_random_data(nsamp),
                              x0=0,
                              dx=1 / fftlength,
                              channel=ts.channel,
                              name=ts.name)
         prod.spectra.append(fs)
     return prod
Esempio n. 17
0
    def to_gwpy_frequencyseries(self):
        """
        Output the frequency series strain data as a :class:`gwpy.frequencyseries.FrequencySeries`.
        """
        try:
            from gwpy.frequencyseries import FrequencySeries
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "Cannot output strain data as gwpy FrequencySeries")

        return FrequencySeries(self.frequency_domain_strain,
                               frequencies=self.frequency_array,
                               epoch=self.start_time,
                               channel=self.channel)
Esempio n. 18
0
    def test_add_arrays(self):
        ts = TimeSeries([1, 2, 3, 4])
        fs = FrequencySeries([1, 2, 3, 4])
        fig = self.FIGURE_CLASS()
        assert len(fig.axes) == 0

        fig.add_timeseries(ts)
        assert len(fig.axes) == 1
        assert isinstance(fig.axes[0], TimeSeriesAxes)

        fig.add_frequencyseries(fs)
        assert len(fig.axes) == 2
        assert isinstance(fig.axes[1], FrequencySeriesAxes)
        fig.close()
Esempio n. 19
0
File: io.py Progetto: gwpy/gwsumm
def read_frequencyseries(filename):
    """Read a `~gwpy.frequencyseries.FrequencySeries` from a file

    IF using HDF5, the filename can be given as a combined filename/path, i.e.
    ``test.hdf5/path/to/dataset``.

    Parameters
    ----------
    filename : `str`
        path of file to read

    Returns
    -------
    series : `~gwpy.frequencyseries.FrequencySeries`
        the data as read

    Raises
    ------
    astropy.io.registry.IORegistryError
        if the input format cannot be identified or is not registered
    """
    # try and parse path in HDF5 file if given
    try:
        ext = HDF5_FILENAME.search(filename).groupdict()['ext']
    except AttributeError:  # no match
        kwargs = {}
    else:
        kwargs = {'path': filename.rsplit(ext, 1)[1]}
    # read file
    try:
        return FrequencySeries.read(filename, **kwargs)
    except IORegistryError:
        if filename.endswith('.gz'):
            fmt = os.path.splitext(filename[:-3])[-1]
        else:
            fmt = os.path.splitext(filename)[-1]
        return FrequencySeries.read(filename, format=fmt.lstrip('.'), **kwargs)
Esempio n. 20
0
def read_frequencyseries(filename):
    """Read a `~gwpy.frequencyseries.FrequencySeries` from a file

    IF using HDF5, the filename can be given as a combined filename/path, i.e.
    ``test.hdf5/path/to/dataset``.

    Parameters
    ----------
    filename : `str`
        path of file to read

    Returns
    -------
    series : `~gwpy.frequencyseries.FrequencySeries`
        the data as read

    Raises
    ------
    astropy.io.registry.IORegistryError
        if the input format cannot be identified or is not registered
    """
    # try and parse path in HDF5 file if given
    try:
        ext = HDF5_FILENAME.search(filename).groupdict()['ext']
    except AttributeError:  # no match
        kwargs = {}
    else:
        kwargs = {'path': filename.rsplit(ext, 1)[1]}
    # read file
    try:
        return FrequencySeries.read(filename, **kwargs)
    except IORegistryError as e:
        if filename.endswith('.gz'):
            fmt = os.path.splitext(filename[:-3])[-1]
        else:
            fmt = os.path.splitext(filename)[-1]
        return FrequencySeries.read(filename, format=fmt.lstrip('.'), **kwargs)
Esempio n. 21
0
    def test_inject(self):
        # create a timeseries out of an array of zeros
        df, nyquist = 1, 2048
        data = FrequencySeries(numpy.zeros(df * nyquist + 1),
                               f0=0,
                               df=df,
                               unit='')

        # create a second timeseries to inject into the first
        w_nyquist = 1024
        sig = FrequencySeries(numpy.ones(df * w_nyquist + 1),
                              f0=0,
                              df=df,
                              unit='')

        # test that we recover this waveform when we add it to data,
        # and that the operation does not change the original data
        new_data = data.inject(sig)
        assert new_data.unit == data.unit
        assert new_data.size == data.size
        ind, = new_data.value.nonzero()
        assert len(ind) == sig.size
        utils.assert_allclose(new_data.value[ind], sig.value)
        utils.assert_allclose(data.value, numpy.zeros(df * nyquist + 1))
Esempio n. 22
0
def kagra_seis(axis='X', pctl=90):
    if axis in ['X', 'Y', 'Z']:
        prefix = '/Users/miyo/Git/miyopy/miyopy/seismodel/JGW-T1910436-v5/'
        fname = 'LongTerm_{axis}_{pctl}_VELO.txt'.format(axis=axis, pctl=pctl)
        vel_asd = FrequencySeries.read(prefix + fname)
        return vel_asd
    elif axis == 'H':
        vel_x = kagra_seis('X', pctl)
        vel_y = kagra_seis('Y', pctl)
        vel_h = (vel_x**2 + vel_y**2)**(1. / 2)
        return vel_h
    elif axis == 'V':
        return kagra_seis('Z', pctl)
    else:
        raise ValueError('hoge')
def _percentile(axis, pctl=50, unit='um/sec', **kwargs):
    _asd = FrequencySeries.read('./data2/LongTerm_{0}_{1}.hdf5'.format(
        axis, pctl))**0.5
    amp = 10**(30.0 / 20.0)
    c2v = 20.0 / 2**15
    _asd = v2vel(_asd) * c2v / amp * 1e6
    if unit == 'um':
        asd = _asd / (2.0 * np.pi * _asd.frequencies.value)
        #asd.write('./LongTerm_{0}_{1}_DISP.txt'.format(axis,pctl),format='txt')
    elif unit == 'um/sec':
        asd = _asd
        #asd.write('./LongTerm_{0}_{1}_VELO.txt'.format(axis,pctl),format='txt')
    else:
        raise ValueError('!!1')
    return asd
Esempio n. 24
0
    def to_pycbc_frequencyseries(self):
        """
        Output the frequency series strain data as a :class:`pycbc.types.frequencyseries.FrequencySeries`.
        """

        try:
            from pycbc.types.frequencyseries import FrequencySeries
            from lal import LIGOTimeGPS
        except ImportError:
            raise ImportError(
                "Cannot output strain data as PyCBC FrequencySeries")

        return FrequencySeries(self.frequency_domain_strain,
                               delta_f=1 / self.duration,
                               epoch=LIGOTimeGPS(self.start_time))
Esempio n. 25
0
def plot_spectra(clusters,
                 channel,
                 unit='cts',
                 xlog=True,
                 legend=None,
                 xlim=None,
                 **kwargs):
    from glob import glob
    from gwpy.frequencyseries import FrequencySeries
    from gwpy.plot import Plot
    title = channel
    psds = {}
    for cluster in clusters:
        for filename in glob('*.hdf5'):
            try:
                psds[cluster] = FrequencySeries.read(filename,
                                                     f'{cluster}-{channel}')
                print(f'found in {filename}')
                break
            except KeyError:
                continue
        else:
            raise KeyError(f'Could not find Nº{cluster}')

    if legend is None:
        legend = clusters

    # plot the group in one figure.
    plt = Plot(*(psds[cluster] for cluster in psds),
               separate=False,
               sharex=True,
               zorder=1,
               **kwargs)
    if xlim is not None:
        plt.gca().set_xlim(xlim)
    plt.gca().set_ylim((1e-48, 1e-37))
    # modify the figure as a whole.
    # plt.add_segments_bar(dq, label='')
    # plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow'])
    if xlog:
        plt.gca().set_xscale('log')
    plt.gca().set_yscale('log')
    plt.gca().set_ylabel(f'Power Spectral Density [{unit}^2/Hz]')
    plt.suptitle(title)
    plt.legend(legend, prop={'size': 15})

    # save to png.
    plt.save(f'{title}.png')
Esempio n. 26
0
 def _gen_white_gaussian_noise(cls, station_names, psd_amp, sample_rate,
         duration, segdur=None, seed=None):
     if segdur is None:
         segdur=duration
     data = SeismometerArray()
     psd = FrequencySeries(psd_amp * np.ones(100000), df=1./(segdur))
     psd[0]=0
     for station in station_names:
         data[station] = Seismometer.initialize_all_good(duration=segdur)
         # set data channels to white noise
         data[station]['HHE'] = gaussian.noise_from_psd(duration,
                 sample_rate, psd, seed=seed, name=station, unit=u.m)
         data[station]['HHN'] = gaussian.noise_from_psd(duration,
                 sample_rate, psd, seed=seed, name=station, unit=u.m)
         data[station]['HHZ'] = gaussian.noise_from_psd(duration,
                 sample_rate, psd, seed=seed, name=station, unit=u.m)
     return data
def _percentile(axis, pctl=50, unit='um/sec', **kwargs):
    suffix = '_{0}_{1}'.format(start, end)
    fname = fname_hdf5_longasd(axis, pctl, suffix=suffix, prefix='./tmp')
    _asd = FrequencySeries.read(fname)**0.5
    amp = 10**(30.0 / 20.0)
    c2v = 20.0 / 2**15
    _asd = v2vel(_asd) * c2v / amp * 1e6
    if unit == 'um':
        asd = _asd / (2.0 * np.pi * _asd.frequencies.value)
        asd.write('./LongTerm_{0}_{1}_DISP.txt'.format(axis, pctl),
                  format='txt')
    elif unit == 'um/sec':
        asd = _asd
        asd.write('./LongTerm_{0}_{1}_VELO.txt'.format(axis, pctl),
                  format='txt')
    else:
        raise ValueError('!!1')
    return asd
Esempio n. 28
0
def get_range_spectrum(channel, segments, config=None, cache=None, query=True,
                       nds=None, return_=True, nproc=1, datafind_error='raise',
                       frametype=None, stride=60, fftlength=None, overlap=None,
                       method=None, which='all', **rangekwargs):
    """Compute percentile spectra of the range integrand from a set of
    spectrograms
    """
    name = str(channel)
    cmin = '%s.min' % name
    cmax = '%s.max' % name

    if name not in globalv.SPECTRUM:
        speclist = get_range_spectrogram(
            channel, segments, config=config, cache=cache, query=query,
            nds=nds, return_=return_, nproc=nproc, frametype=frametype,
            datafind_error=datafind_error, method=method, stride=stride,
            fftlength=fftlength, overlap=overlap, **rangekwargs)
        specgram = speclist.join(gap='ignore')
        try:  # store median spectrum
            globalv.SPECTRUM[name] = specgram.percentile(50)
        except (ValueError, IndexError):
            unit = 'Mpc' if 'energy' in rangekwargs else 'Mpc^2 / Hz'
            globalv.SPECTRUM[name] = FrequencySeries(
                [], channel=channel, f0=0, df=1, unit=unit)
            globalv.SPECTRUM[cmin] = globalv.SPECTRUM[name]
            globalv.SPECTRUM[cmax] = globalv.SPECTRUM[name]
        else:  # store percentiles
            globalv.SPECTRUM[cmin] = specgram.percentile(5)
            globalv.SPECTRUM[cmax] = specgram.percentile(95)

    if not return_:
        return

    if which == 'all':
        return (globalv.SPECTRUM[name], globalv.SPECTRUM[cmin],
                globalv.SPECTRUM[cmax])
    if which == 'mean':
        return globalv.SPECTRUM[name]
    if which == 'min':
        return globalv.SPECTRUM[cmin]
    if which == 'max':
        return globalv.SPECTRUM[cmax]
    raise ValueError("Unrecognised value for `which`: %r" % which)
Esempio n. 29
0
def vel2vel(fseries):
    #c2v = 10.0/2**15
    #degain = 10**(-30./20.)
    z, p, k = trillium.zpk_120qa()
    num, den = zpk2tf(z, p, k)
    w, h = freqs(num, den, worN=np.logspace(-4, 5, 1e2))
    mag = abs(h)
    f = w / np.pi / 2.0
    func = interp1d(f, mag)
    _f = fseries.frequencies.value
    if False:
        plt.loglog(f, abs(mag), 'o-')
        #plt.loglog(_f,_mag)
        plt.savefig('hoge.png')
    vel2v = func(_f[1:])
    value = fseries.value[1:] / vel2v * 1202.5
    f0 = fseries.f0
    df = fseries.df
    return FrequencySeries(value, df=df, f0=f0 + df)
Esempio n. 30
0
    def waveform(self, IFO=None, index=None, whiten=True):
        """
        Generate waveform from a posterior sample

        INPUTS
        ------
        IFO: str
            which instrument into which to project
            e.g. 'H1', 'L1' or 'V1'
        index: int
            which individual posterior sample to use?
            if None, then use the max posterior point
        whiten: bool
            if True, then whiten the signal

        RETURNS
        -------
        model:
            the model waveform
        """
        ind = self.MAPindex if index is None else ind

        dt = 1 / 2**np.ceil(np.log2(2 * max(self.f_high.values())))

        # compute TD waveform
        model = self.samples.td_waveform(self.approx,
                                         dt,
                                         self.f_low[IFO],
                                         f_ref=self.f_ref,
                                         ind=ind,
                                         project=IFO)
        model.dx = dt

        if whiten:
            # unpack PSD into FrequencySeries ASD object
            fS = np.array(self.psd[IFO])
            asd = FrequencySeries(np.sqrt(fS[:, 1]), frequencies=fS[:, 0])

            # whiten the model
            model = model.whiten(asd=asd)

        return model
Esempio n. 31
0
def save_asd(axis, available, percentile=50, **kwargs):
    prefix = kwargs.pop('prefix', './data')
    write = kwargs.pop('write', None)
    write_gwf = kwargs.pop('write_gwf', None)
    skip = kwargs.pop('skip', None)

    asd_fmt = '{0}/{1}_{2:02d}_LongTerm.hdf5'.format(prefix, axis, percentile)
    if os.path.exists(asd_fmt):
        #log.debug(asd_fmt+' Read')
        return FrequencySeries.read(asd_fmt, format='hdf5')

    log.debug(asd_fmt + ' Saving {0:02d} percentile'.format(percentile))
    fnamelist = [
        prefix + '/{0}_{1}_{2}.hdf5'.format(axis, start, end)
        for start, end in available
    ]
    specgrams = Spectrogram.read(fnamelist[0], format='hdf5')
    [specgrams.append(Spectrogram.read(fname,format='hdf5'),gap='ignore') \
     for fname in fnamelist]
    asd = specgrams.percentile(percentile)
    asd.write(asd_fmt, format='hdf5', overwrite=True)
    return asd
Esempio n. 32
0
    def test_read_ligolw(self):
        with tempfile.NamedTemporaryFile(mode='w+') as fobj:
            fobj.write(LIGO_LW_ARRAY)
            array = FrequencySeries.read(
                fobj, 'psd', match={'channel': 'X1:TEST-CHANNEL_1'})
            utils.assert_array_equal(array, list(range(1, 11)) / units.Hz)
            utils.assert_array_equal(array.frequencies,
                                     list(range(10)) * units.Hz)
            assert numpy.isclose(array.epoch.gps, 1000000000)  # precision gah!
            assert array.unit == units.Hz ** -1

            array2 = FrequencySeries.read(
                fobj, 'psd', match={'channel': 'X1:TEST-CHANNEL_2'})
            assert array2.epoch is None

            # assert errors
            with pytest.raises(ValueError):
                FrequencySeries.read(fobj, 'blah')
            with pytest.raises(ValueError):
                FrequencySeries.read(fobj, 'psd')
            with pytest.raises(ValueError):
                FrequencySeries.read(
                    fobj, 'psd',
                    match={'channel': 'X1:TEST-CHANNEL_1', 'blah': 'blah'})
Esempio n. 33
0
def plot(request):
    # if this is a POST request we need to process the form data
    if request.method == 'GET':

        # create a form instance and populate it with data from the request:
        form = WaveformForm(request.GET)
        # check whether it's valid:
        if form.is_valid():
            # This is where waveform generation code will go Chris P
            # You parse the request for as such
            f, hp, hx = gen_waveform(form.cleaned_data)
            assert len(f) == len(hp), "{0}, {1}".format(len(f), len(hp))

            hp = FrequencySeries(hp, frequencies=f)
            hx = FrequencySeries(hx, frequencies=f)

            asd = FrequencySeries(
                gen_psd(form, f),
                frequencies=f) if form.cleaned_data["psd"] != "None" else None

            plot = hp.abs().plot(color='red',
                                 label=r"$|h_+|(f)$",
                                 yscale='log')
            ax = plot.gca()
            ax.plot(hx.abs(),
                    color='black',
                    linestyle='-.',
                    label=r"$|h_x|(f)$")
            if asd is not None:
                ax.plot(asd)

            # For now just plot |h|
            # FIXME: These will most likely overlap
            ax.set_ylabel(r'GW strain [strain$/\sqrt{\mathrm{Hz}}$]')
            plot.legend()
            buf = io.BytesIO()
            canvas = FigureCanvas(plot)
            canvas.print_png(buf)
            response = HttpResponse(buf.getvalue(), content_type='image/png')
            pyplot.close(plot)
            return response
Esempio n. 34
0
    def draw(self):
        # initialise
        (plot, axes) = self.init_plot()
        ax = axes[0]
        ax.grid(b=True, axis='y', which='major')
        channel = self.channels[0]

        # parse data arguments
        sdform = self.pargs.pop('format')
        clim = self.pargs.pop('clim')
        clog = self.pargs.pop('logcolor')
        clabel = self.pargs.pop('colorlabel')
        rasterized = self.pargs.pop('rasterized', True)
        ratio = self.ratio

        # get cmap
        if ratio in ['median', 'mean'] or (
                isinstance(ratio, str) and os.path.isfile(ratio)):
            self.pargs.setdefault('cmap', 'Spectral_r')
        cmap = self.pargs.pop('cmap', None)

        # get data
        if self.state and not self.all_data:
            valid = self.state.active
        else:
            valid = SegmentList([self.span])

        if self.type == 'coherence-spectrogram':
            specgrams = get_coherence_spectrogram(self.channels, valid,
                                                  query=False)
        else:
            specgrams = get_spectrogram(channel, valid, query=False,
                                        format=sdform)

        # calculate ratio spectrum
        if len(specgrams) and (ratio in ['median', 'mean'] or
                               isinstance(ratio, int)):
            try:
                allspec = specgrams.join(gap='ignore')
            except ValueError as e:
                if 'units do not match' in str(e):
                    warnings.warn(str(e))
                    for spec in specgrams[1:]:
                        spec.unit = specgrams[0].unit
                    allspec = specgrams.join(gap='ignore')
                else:
                    raise
            if isinstance(ratio, int):
                ratio = allspec.percentile(ratio)
            else:
                ratio = getattr(allspec, ratio)(axis=0)
        elif isinstance(ratio, str) and os.path.isfile(ratio):
            try:
                ratio = FrequencySeries.read(ratio)
            except IOError as e:
                warnings.warn('IOError: %s' % str(e))
            except Exception as e:
                # hack for old versions of GWpy
                # TODO: remove me when GWSumm requires GWpy > 0.1
                if 'Format could not be identified' in str(e):
                    ratio = FrequencySeries.read(ratio, format='dat')
                else:
                    raise

        # allow channel data to set parameters
        if getattr(channel, 'frequency_range', None) is not None:
            self.pargs.setdefault('ylim', channel.frequency_range)
            if isinstance(self.pargs['ylim'], Quantity):
                self.pargs['ylim'] = self.pargs['ylim'].value
        if (ratio is None and sdform in ['amplitude', 'asd'] and
                hasattr(channel, 'asd_range') and clim is None):
            clim = channel.asd_range
        elif (ratio is None and hasattr(channel, 'psd_range') and
              clim is None):
            clim = channel.psd_range

        # plot data
        for specgram in specgrams:
            # undo demodulation
            specgram = undo_demodulation(specgram, channel,
                                         self.pargs.get('ylim', None))
            # calculate ratio
            if ratio is not None:
                specgram = specgram.ratio(ratio)
            # plot
            ax.plot_spectrogram(specgram, cmap=cmap, rasterized=rasterized)

        # add colorbar
        if len(specgrams) == 0:
            ax.scatter([1], [1], c=[1], visible=False, cmap=cmap)
        plot.add_colorbar(ax=ax, clim=clim, log=clog, label=clabel, cmap=cmap)

        # customise and finalise
        for key, val in self.pargs.iteritems():
            if key == 'ratio':
                continue
            try:
                getattr(ax, 'set_%s' % key)(val)
            except AttributeError:
                setattr(ax, key, val)
        if self.state:
            self.add_state_segments(ax)
        return self.finalize()
Esempio n. 35
0
    def _draw(self):
        """Load all data, and generate this `SpectrumDataPlot`
        """
        plot = self.plot = FrequencySeriesPlot(
            figsize=self.pargs.pop('figsize', [12, 6]))
        ax = plot.gca()
        ax.grid(b=True, axis='both', which='both')

        if self.state:
            self.pargs.setdefault(
                'suptitle',
                '[%s-%s, state: %s]' % (self.span[0], self.span[1],
                                        label_to_latex(str(self.state))))
        suptitle = self.pargs.pop('suptitle', None)
        if suptitle:
            plot.suptitle(suptitle, y=0.993, va='top')

        # get spectrum format: 'amplitude' or 'power'
        sdform = self.pargs.pop('format')
        if sdform == 'rayleigh':
            method = 'rayleigh'
        else:
            method = None
        use_percentiles = str(
            self.pargs.pop('no-percentiles')).lower() == 'false'

        # parse plotting arguments
        plotargs = self.parse_plot_kwargs()
        legendargs = self.parse_legend_kwargs()

        # get reference arguments
        refs = []
        refkey = 'None'
        for key in sorted(self.pargs.keys()):
            if key == 'reference' or re.match('reference\d+\Z', key):
                refs.append(dict())
                refs[-1]['source'] = self.pargs.pop(key)
                refkey = key
            if re.match('%s[-_]' % refkey, key):
                refs[-1][key[len(refkey)+1:]] = self.pargs.pop(key)

        # add data
        if self.type == 'coherence-spectrum':
            iterator = zip(self.channels[0::2], self.channels[1::2], plotargs)
        else:
            iterator = zip(self.channels, plotargs)

        for chantuple in iterator:
            channel = chantuple[0]
            channel2 = chantuple[1]
            pargs = chantuple[-1]

            if self.state and not self.all_data:
                valid = self.state
            else:
                valid = SegmentList([self.span])

            if self.type == 'coherence-spectrum':
                data = get_coherence_spectrum([str(channel), str(channel2)],
                                              valid, query=False)
            else:
                data = get_spectrum(str(channel), valid, query=False,
                                    format=sdform, method=method)

            # undo demodulation
            for spec in data:
                spec = undo_demodulation(spec, channel,
                                         self.pargs.get('xlim', None))

            # anticipate log problems
            if self.pargs['logx']:
                data = [s[1:] for s in data]
            if self.pargs['logy']:
                for sp in data:
                    sp.value[sp.value == 0] = 1e-100

            if use_percentiles:
                ax.plot_spectrum_mmm(*data, **pargs)
            else:
                pargs.pop('alpha', None)
                ax.plot_spectrum(data[0], **pargs)

            # allow channel data to set parameters
            if getattr(channel, 'frequency_range', None) is not None:
                self.pargs.setdefault('xlim', channel.frequency_range)
                if isinstance(self.pargs['xlim'], Quantity):
                    self.pargs['xlim'] = self.pargs['xlim'].value
            if (sdform in ['amplitude', 'asd'] and
                    hasattr(channel, 'asd_range')):
                self.pargs.setdefault('ylim', channel.asd_range)
            elif hasattr(channel, 'psd_range'):
                self.pargs.setdefault('ylim', channel.psd_range)

        # display references
        for i, ref in enumerate(refs):
            if 'source' in ref:
                source = ref.pop('source')
                try:
                    refspec = FrequencySeries.read(source)
                except IOError as e:
                    warnings.warn('IOError: %s' % str(e))
                except Exception as e:
                    # hack for old versions of GWpy
                    # TODO: remove me when GWSumm requires GWpy > 0.1
                    if 'Format could not be identified' in str(e):
                        refspec = FrequencySeries.read(source, format='dat')
                    else:
                        raise
                else:
                    ref.setdefault('zorder', -len(refs) + 1)
                    if 'filter' in ref:
                        refspec = refspec.filter(*ref.pop('filter'))
                    if 'scale' in ref:
                        refspec *= ref.pop('scale', 1)
                    ax.plot(refspec, **ref)

        # customise
        hlines = list(self.pargs.pop('hline', []))
        for key, val in self.pargs.iteritems():
            try:
                getattr(ax, 'set_%s' % key)(val)
            except AttributeError:
                setattr(ax, key, val)

        # add horizontal lines to add
        if hlines:
            if not isinstance(hlines[-1], float):
                lineparams = hlines.pop(-1)
            else:
                lineparams = {'color':'r', 'linestyle': '--'}
        for yval in hlines:
            try:
                yval = float(yval)
            except ValueError:
                continue
            else:
                ax.plot(ax.get_xlim(), [yval, yval], **lineparams)

        if len(self.channels) > 1 or ax.legend_ is not None:
            plot.add_legend(ax=ax, **legendargs)
        if not plot.colorbars:
            plot.add_colorbar(ax=ax, visible=False)

        return self.finalize()
Esempio n. 36
0
    def _draw(self):
        """Load all data, and generate this `SpectrumDataPlot`
        """
        plot = self.plot = FrequencySeriesPlot(
            figsize=self.pargs.pop('figsize', [12, 6]))
        ax = plot.gca()

        if self.state:
            self.pargs.setdefault(
                'suptitle',
                '[%s-%s, state: %s]' % (self.span[0], self.span[1],
                                        label_to_latex(str(self.state))))
        suptitle = self.pargs.pop('suptitle', None)
        if suptitle:
            plot.suptitle(suptitle, y=0.993, va='top')

        # parse plotting arguments
        cmap = self.pargs.pop('cmap', None)
        varargs = self.parse_variance_kwargs()
        plotargs = self.parse_plot_kwargs()[0]
        legendargs = self.parse_legend_kwargs()

        # get reference arguments
        refs = []
        refkey = 'None'
        for key in sorted(self.pargs.keys()):
            if key == 'reference' or re.match('reference\d+\Z', key):
                refs.append(dict())
                refs[-1]['source'] = self.pargs.pop(key)
                refkey = key
            if re.match('%s[-_]' % refkey, key):
                refs[-1][key[len(refkey)+1:]] = self.pargs.pop(key)

        # get channel arguments
        if hasattr(self.channels[0], 'asd_range'):
            low, high = self.channels[0].asd_range
            varargs.setdefault('low', low)
            varargs.setdefault('high', high)

        # calculate spectral variance and plot
        # pad data request to over-fill plots (no gaps at the end)
        if self.state and not self.all_data:
            valid = self.state.active
        else:
            valid = SegmentList([self.span])
        livetime = float(abs(valid))

        if livetime:
            plotargs.setdefault('vmin', 1/livetime)
        plotargs.setdefault('vmax', 1.)
        plotargs.pop('label')

        specgram = get_spectrogram(self.channels[0], valid, query=False,
                                    format='asd').join(gap='ignore')

        if specgram.size:
            asd = specgram.median(axis=0)
            asd.name = None
            variance = specgram.variance(**varargs)
            # normalize the variance
            variance /= livetime / specgram.dt.value
            # undo demodulation
            variance = undo_demodulation(variance, self.channels[0],
                                         self.pargs.get('xlim', None))

            # plot
            ax.plot(asd, color='grey', linewidth=0.3)
            m = ax.plot_variance(variance, cmap=cmap, **plotargs)
        #else:
        #    ax.scatter([1], [1], c=[1], visible=False, vmin=plotargs['vmin'],
        #               vmax=plotargs['vmax'], cmap=plotargs['cmap'])
        #plot.add_colorbar(ax=ax, log=True, label='Fractional time at amplitude')

        # allow channel data to set parameters
        if getattr(self.channels[0], 'frequency_range', None) is not None:
            self.pargs.setdefault('xlim', self.channels[0].frequency_range)
            if isinstance(self.pargs['xlim'], Quantity):
                self.pargs['xlim'] = self.pargs['xlim'].value
        if hasattr(self.channels[0], 'asd_range'):
            self.pargs.setdefault('ylim', self.channels[0].asd_range)

        # display references
        for i, ref in enumerate(refs):
            if 'source' in ref:
                source = ref.pop('source')
                try:
                    refspec = FrequencySeries.read(source)
                except IOError as e:
                    warnings.warn('IOError: %s' % str(e))
                except Exception as e:
                    # hack for old versions of GWpy
                    # TODO: remove me when GWSumm requires GWpy > 0.1
                    if 'Format could not be identified' in str(e):
                        refspec = FrequencySeries.read(source, format='dat')
                    else:
                        raise
                else:
                    if 'filter' in ref:
                        refspec = refspec.filter(*ref.pop('filter'))
                    if 'scale' in ref:
                        refspec *= ref.pop('scale', 1)
                    ax.plot(refspec, **ref)

        # customise
        hlines = list(self.pargs.pop('hline', []))
        self.apply_parameters(ax, **self.pargs)

        # add horizontal lines to add
        if hlines:
            if not isinstance(hlines[-1], float):
                lineparams = hlines.pop(-1)
            else:
                lineparams = {'color':'r', 'linestyle': '--'}
        for yval in hlines:
            try:
                yval = float(yval)
            except ValueError:
                continue
            else:
                ax.plot(ax.get_xlim(), [yval, yval], **lineparams)

        # set grid
        ax.grid(b=True, axis='both', which='both')

        if not plot.colorbars:
            plot.add_colorbar(ax=ax, visible=False)

        return self.finalize()