Esempio n. 1
0
 def test_highpass(self):
     iir = filter_design.highpass(100, 1024)
     utils.assert_zpk_equal(iir, HIGHPASS_IIR_100HZ)
     fir = filter_design.highpass(100, 1024, type='fir')
     utils.assert_allclose(fir, HIGHPASS_FIR_100HZ)
Esempio n. 2
0
# To create a high-pass filter at 100 Hz for 4096 Hz-sampled data:

from gwpy.signal.filter_design import highpass
hp = highpass(100, 4096)

# To view the filter, you can use the `~gwpy.plotter.BodePlot`:

from gwpy.plotter import BodePlot
plot = BodePlot(hp, sample_rate=4096)
plot.show()
Esempio n. 3
0
def main(start, end, chname):
    data = TimeSeries.read(dumped_gwf_fmt.format(start=start,
                                                 end=end,
                                                 chname=channel),
                           channel,
                           verbose=True,
                           nproc=8)

    # Filtering
    from gwpy.signal import filter_design
    from gwpy.plot import BodePlot
    import numpy
    bp_high = filter_design.highpass(
        0.3,
        data.sample_rate,
        analog=True,
        ftype='butter',
        gpass=2,
        gstop=30  #,fstop()
    )
    bp_mid = filter_design.bandpass(
        0.05,
        0.3,
        data.sample_rate,
        analog=True,
        ftype='butter',
        gpass=2,
        gstop=30  #,fstop=(0.01,0.5)
    )
    bp_low = filter_design.lowpass(
        0.05,
        data.sample_rate,
        analog=True,
        ftype='butter',
        gpass=2,
        gstop=30  #, fstop=2
    )
    filters = [bp_high, bp_mid, bp_low]

    plot = BodePlot(*filters,
                    analog=True,
                    frequencies=numpy.logspace(-3, 1, 1e5),
                    dB=False,
                    unwrap=False,
                    title='filter')
    axes = plot.get_axes()
    axes[0].set_yscale('log')
    axes[0].set_ylim(1e-4, 2e0)
    axes[-1].set_xlim(1e-2, 1e0)
    axes[-1].set_ylim(-180, 180)
    plot.savefig('Bodeplot_BandPass.png')
    plot.close()

    data_high = data.filter(bp_high, filtfilt=True)
    data_high = data_high.crop(*data_high.span.contract(1))
    data_mid = data.filter(bp_mid, filtfilt=True)
    data_mid = data_mid.crop(*data_mid.span.contract(1))
    data_low = data.filter(bp_low, filtfilt=True)
    data_low = data_low.crop(*data_low.span.contract(1))

    # Plot TimeSeries
    title = channel[3:].replace('_', ' ')
    labels = [
        'No filt', 'High (300mHz-)', 'Mid (50mHz-300mHz)', 'Low (-50mHz)'
    ]
    if data.unit == ' ':
        yaxis_label = 'Count'
    else:
        yaxis_label = data.unit

    from gwpy.plot import Plot
    data_set = [data, data_high, data_mid, data_low]
    plot = Plot(*data_set,
                separate=True,
                sharex=True,
                sharey=True,
                color='gwpy:ligo-livingston',
                figsize=[10, 10])

    axes = plot.get_axes()
    for i, ax in enumerate(axes):
        ax.legend([labels[i]], loc='upper left')

    plot.text(0.04,
              0.5,
              yaxis_label,
              va='center',
              rotation='vertical',
              fontsize=16)
    #plot.text(0.5, 0.93, title, va='center',ha='center',rotation='horizontal',fontsize=16)
    axes[0].set_title(title, fontsize=16)
    axes[-1].set_xscale('Hours', epoch=start)
    plot.savefig(timeseriesplot_fname_fmt.format(channel=channel))
    plot.close()
Esempio n. 4
0
 def test_highpass(self):
     iir = filter_design.highpass(100, 1024)
     utils.assert_zpk_equal(iir, HIGHPASS_IIR_100HZ)
     fir = filter_design.highpass(100, 1024, type='fir')
     utils.assert_allclose(fir, HIGHPASS_FIR_100HZ)
Esempio n. 5
0
def main(channel,start,end):

    data = TimeSeries.read(
        dumped_gwf_fmt.format(start=start,end=end,chname=channel),
        channel, verbose=True ,nproc=8)


    # Filter
    zpk_bp_high = filter_design.highpass(0.3, data.sample_rate, 
                                         ftype='butter',analog=False,
                                         gpass=2,gstop=40,fstop=0.03
    )
    zpk_bp_mid = filter_design.bandpass(0.03, 0.3, data.sample_rate, 
                                        ftype='butter',analog=False,
                                        gpass=2, gstop=40,fstop=(0.003,3)
    )
    zpk_bp_low = filter_design.lowpass(0.03, data.sample_rate, 
                                       ftype='butter',analog=False,
                                       gpass=2, gstop=40, fstop=0.3
    )
    filters = [zpk_bp_high, zpk_bp_mid, zpk_bp_low]

    # Plot Bodeplot
    plot = BodePlot(*filters,
                    frequencies=numpy.logspace(-4,1,1e5),
                    dB=True,sample_rate=data.sample_rate,
                    unwrap=False,analog=False,
                    title='filter')
    axes = plot.get_axes()
    labels = ['High (300mHz-)','Mid (50mHz-300mHz)','Low (-50mHz)']
    for i,ax in enumerate(axes):
        ax.legend(labels,loc='lower left')
        
    #axes[0].set_yscale('log')
    #axes[0].set_ylim(1e-3,2e0)
    axes[0].set_ylim(-40,2)
    axes[-1].set_xlim(5e-3,3e0)
    axes[-1].set_ylim(-200,200)
    plot.savefig('Bodeplot_BandPass.png')
    plot.close()
        
    # Filtering
    data_high = data.filter(zpk_bp_high, filtfilt=True,analog=False)
    data_mid = data.filter(zpk_bp_mid, filtfilt=True,analog=False)
    data_low = data.filter(zpk_bp_low, filtfilt=True,analog=False)

    # 
    data_high = data_high.crop(*data_high.span.contract(1))
    data_mid = data_mid.crop(*data_mid.span.contract(1))
    data_low = data_low.crop(*data_low.span.contract(1))
        
    # Plot TimeSeries        
    from gwpy.plot import Plot    
    data_set = [data,data_high, data_mid, data_low]
    plot = Plot(*data_set,
                separate=True, sharex=True, sharey=True,
                color='gwpy:ligo-livingston',
                figsize=[10,10])

    # Add text, and save figure
    title = channel[3:].replace('_',' ')
    labels = ['No filt', 'High (300mHz-)', 'Mid (50mHz-300mHz)', 'Low (-50mHz)']
    if data.unit == ' ':
        yaxis_label = 'Count'
    else:
        yaxis_label = data.unit
    axes = plot.get_axes()
    for i,ax in enumerate(axes):
        ax.legend([labels[i]],loc='upper left')
    plot.text(0.04, 0.5, yaxis_label, va='center', rotation='vertical',fontsize=18)
    axes[0].set_title(title,fontsize=16)
    axes[-1].set_xscale('Hours', epoch=start)
    plot.savefig(timeseriesplot_fname_fmt.format(channel=channel))
    plot.close()