def step(self, action): vel, angle = action # Distance between the wheels baseline = self.unwrapped.wheel_dist # assuming same motor constants k for both motors k_r = self.k k_l = self.k # adjusting k by gain and trim k_r_inv = (self.gain + self.trim) / k_r k_l_inv = (self.gain - self.trim) / k_l omega_r = (vel + 0.5 * angle * baseline) / self.radius omega_l = (vel - 0.5 * angle * baseline) / self.radius # conversion from motor rotation rate to duty cycle u_r = omega_r * k_r_inv u_l = omega_l * k_l_inv # limiting output to limit, which is 1.0 for the duckiebot u_r_limited = max(min(u_r, self.limit), -self.limit) u_l_limited = max(min(u_l, self.limit), -self.limit) vels = np.array([u_l_limited, u_r_limited]) obs, reward, done, info = Simulator.step(self, vels) mine = {} mine['k'] = self.k mine['gain'] = self.gain mine['train'] = self.trim mine['radius'] = self.radius mine['omega_r'] = omega_r mine['omega_l'] = omega_l info['DuckietownEnv'] = mine return obs, reward, done, info
action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) # Initialize policy policy = DDPG(state_dim, action_dim, max_action, net_type="dense") policy.load("model", directory="./models", for_inference=True) with torch.no_grad(): while True: env.reset() obs = env.get_features() env.render() rewards = [] while True: action = policy.predict(np.array(obs)) _, rew, done, misc = env.step(action) obs = env.get_features() rewards.append(rew) env.render() try: lp = env.get_lane_pos2(env.cur_pos, env.cur_angle) dist = abs(lp.dist) except: dist = 0 print(f"Reward: {rew:.2f}", f"\t| Action: [{action[0]:.3f}, {action[1]:.3f}]", f"\t| Speed: {env.speed:.2f}", f"\t| Dist.: {dist:.3f}") cv2.imshow("obs", obs)
img_msg.data = np.array(cv2.imencode('.jpg', image)[1]).tostring() self.pub_img.publish(img_msg) if __name__ == '__main__': wrapper = RosWrapperNode(node_name='ros_wrapper_node') env = Simulator( seed=123, # random seed map_name="loop_empty", max_steps=500001, # we don't want the gym to reset itself domain_rand=0, camera_width=640, camera_height=480, accept_start_angle_deg=4, # start close to straight full_transparency=True, distortion=True, ) obs = env.reset() wrapper.publish_img(obs) while not rospy.is_shutdown(): action = [wrapper.action_l, wrapper.action_r] obs, reward, done, _ = env.step(action) if done: obs = env.reset() wrapper.publish_img(obs) rospy.Rate(15).sleep()
#!/usr/bin/env python3 import gym_duckietown from gym_duckietown.simulator import Simulator env = Simulator( seed=123, # random seed map_name="loop_empty", max_steps=500001, # we don't want the gym to reset itself domain_rand=0, camera_width=640, camera_height=480, accept_start_angle_deg=4, # start close to straight full_transparency=True, distortion=True, ) while True: action = [0.1, 0.1] observation, reward, done, misc = env.step(action) #print(observation) env.render() if done: env.reset()
class ROSWrapper(DTROS): ''' Class that creates a wrapper between the duckietown simulator and the ROS interface of a fake robot simulated in the host. The node serves as interface for the following parts: - Subscribes to the wheels command topic and transforms it into actions in simulation - Publishes the rendered observations in the simulator to the camera image topic ''' def __init__(self, node_name): # initialize the DTROS parent class super(ROSWrapper, self).__init__(node_name=node_name, node_type=NodeType.GENERIC) # construct rendered observation publisher self.camera_pub = rospy.Publisher('~/' + VEHICLE_NAME + '/camera_node/image/compressed', CompressedImage, queue_size=1) # Construct subscriber for wheel_cmd topic self.wheels_cmd_sub = rospy.Subscriber( '~/' + VEHICLE_NAME + '/wheels_driver_node/wheels_cmd', WheelsCmdStamped, self.wheels_cmd_cb, queue_size=1) # Initialize the simulator self.env = Simulator( seed=123, # random seed map_name="loop_empty", max_steps=500001, # we don't want the gym to reset itself domain_rand=0, camera_width=640, camera_height=480, accept_start_angle_deg=4, # start close to straight full_transparency=True, distortion=True, ) # Create action variable self.action = [0.0, 0.0] def wheels_cmd_cb(self, msg): ''' Callback that maps wheel commands into actions in the simulator. Creates the simulated robot actions based on the received command through the main topic in the duckietown infrastructure. Args: msg (WheelsCmdStamped): Velocity command ''' vel_left = msg.vel_left vel_right = msg.vel_right self.action = [vel_left, vel_right] def run(self): ''' Continuously run the wrapper to map ROS interface with simulator. This method runs the node, and begins an iterative process where the image is retrieved from the simulator and published in the camera image topic, and the wheels command received by subscribing to the wheels_cmd topic is translated into actions executed in the simulator. The process iterates until the node is terminated ''' while not rospy.is_shutdown(): # Update the simulator # the action message is updated every time the wheels_cmd_cb is called # that is, every time a message arrives. observation, reward, done, misc = self.env.step(self.action) # Render the new state self.env.render() # Set again action to stop, in case no more messages are being received self.action = [0.0, 0.0] if done: # Reset the simulator when the robot goes out of the road. self.env.reset() # Transalte the observation into a CompressedImage message to publish it bgr_obs = cv2.cvtColor(observation, cv2.COLOR_RGB2BGR) bridge = CvBridge() img_msg = bridge.cv2_to_compressed_imgmsg(cvim=bgr_obs, dst_format="jpg") # Publish the image in the /image/compressed topic self.camera_pub.publish(img_msg)
def move(self, velocities): obs, reward, done, info = Simulator.step(self, np.array(velocities)) return obs # , reward, done
class MyROSWrapperNode(DTROS): def __init__(self, node_name): # initialize the DTROS parent class #color = rospy.get_param('~color') super(MyROSWrapperNode, self).__init__(node_name=node_name, node_type=NodeType.GENERIC) # construct Publisher and Subscriber self.pub = rospy.Publisher('/fakebot/camera_node/image/compressed', CompressedImage, queue_size=10) self.sub = rospy.Subscriber('/fakebot/wheels_driver_node/wheels_cmd', WheelsCmdStamped, self.callback) #self.sub = rospy.Subscriber('chatter', String, self.callback) self.iter = 0 # create bag files: # self.bag = bag self.env = Simulator( seed=123, # random seed map_name="loop_empty", max_steps=500001, # we don't want the gym to reset itself domain_rand=0, camera_width=640, camera_height=480, accept_start_angle_deg=4, # start close to straight full_transparency=True, distortion=True, ) self.br = CvBridge() self.right_wheel = 0 self.left_wheel = 0 def callback(self, data): if data: # update wheel command to action self.right_wheel = data.vel_right self.left_wheel = data.vel_left action = [self.left_wheel, self.right_wheel] print("I got command:", action) observation, reward, done, misc = self.env.step(action) # env.render() # print("observation.shape:",observation.shape ) # observation.shape: (480, 640, 3) # print("observation.type:", type(observation)) # observation.type: <class 'numpy.ndarray'> # publish image to viewer # np_arr = np.fromstring(data.data, np.uint8) # img = cv2.imdecode(observation, cv2.IMREAD_COLOR) img = cv2.cvtColor(np.asarray(observation), cv2.COLOR_RGB2BGR) compressed_img_msg = self.br.cv2_to_compressed_imgmsg( img, dst_format='jpg') self.pub.publish(compressed_img_msg) if done: self.env.reset() else: rospy.loginfo("waiting for Publisher")
class DuckiegymRosWrapperNode(DTROS): """ Run a gym-duckietown simulator, redirect the simulator's image to a ros topic, redirect the wheel commands to simulator actions. """ def __init__(self, node_name): super(DuckiegymRosWrapperNode, self).__init__(node_name=node_name, node_type=NodeType.GENERIC) self.action = [0, 0] # wheel commands for simulator self.camera_info = self.load_camera_info( "/data/config/calibrations/camera_intrinsic/default.yaml") self.bridge = CvBridge() vehicle_name = os.environ.get("VEHICLE_NAME") image_topic = "/" + vehicle_name + "/camera_node/image/compressed" self.pub_img = rospy.Publisher(image_topic, CompressedImage) camera_info_topic = "/" + vehicle_name + "/camera_node/camera_info" self.pub_camera_info = rospy.Publisher(camera_info_topic, CameraInfo) wheels_cmd_topic = "/" + vehicle_name + "/wheels_driver_node/wheels_cmd" self.sub_wheels_cmd = rospy.Subscriber(wheels_cmd_topic, WheelsCmdStamped, self.callback_wheels_cmd, queue_size=1) self.sim = Simulator( seed=123, # random seed map_name="loop_empty", max_steps=500001, # we don't want the gym to reset itself domain_rand=0, camera_width=640, camera_height=480, accept_start_angle_deg=4, # start close to straight full_transparency=True, distortion=False, ) def run_simulator(self): """ Main loop of this node, runs simulation loop and camera publishers. """ while not rospy.is_shutdown(): observation, reward, done, misc = self.sim.step(self.action) self.publish_camera_info() self.publish_camera_image(observation) self.sim.render() if done: self.sim.reset() def callback_wheels_cmd(self, msg): """ Update action variable (parameter for simulator) on callback. """ self.action = [msg.vel_left, msg.vel_right] def publish_camera_image(self, observation): """ Publish simulated camera frame as CompressedImage message. """ img = self.bridge.cv2_to_compressed_imgmsg(cv2.cvtColor( observation, cv2.COLOR_RGB2BGR), dst_format="jpg") img.header.stamp = rospy.Time.now() self.pub_img.publish(img) def publish_camera_info(self): """ Publish calibration info about camera. """ self.camera_info.header.stamp = rospy.Time.now() self.pub_camera_info.publish(self.camera_info) def load_camera_info(self, filename): """ Load calibration info about camera from config file. """ with open(filename, 'r') as stream: calib_data = yaml.load(stream) cam_info = CameraInfo() cam_info.width = calib_data['image_width'] cam_info.height = calib_data['image_height'] cam_info.K = calib_data['camera_matrix']['data'] cam_info.D = calib_data['distortion_coefficients']['data'] cam_info.R = calib_data['rectification_matrix']['data'] cam_info.P = calib_data['projection_matrix']['data'] cam_info.distortion_model = calib_data['distortion_model'] return cam_info