def __init__(self,
               headless=False,
               simple=False,
               max_force=1000,
               max_vel=100,
               goal_halfsphere=False,
               backlash=.1,
               double_goal=False):
    self.simple = simple
    self.max_force = max_force
    self.max_vel = max_vel
    self.double_goal = double_goal

    self.robot = SingleRobot(
        debug=not headless, heavy=True, new_backlash=backlash, silent=True)
    self.ball = Ball(1)
    self.rhis = RandomPointInHalfSphere(
        0.0,
        3.69,
        4.37,
        radius=RADIUS,
        height=26.10,
        min_dist=10.,
        halfsphere=goal_halfsphere)
    self.goal = None
    self.goals_done = 0
    self.goal_dirty = False
    self.dist = DistanceBetweenObjects(
        bodyA=self.robot.id, bodyB=self.ball.id, linkA=19, linkB=1)
    self.episodes = 0  # used for resetting the sim every so often
    self.restart_every_n_episodes = 1000

    self.force_urdf_reload = False

    self.metadata = {'render.modes': ['human']}

    if not simple:
      # observation = 6 joints + 6 velocities + 3 coordinates for target
      self.observation_space = spaces.Box(
          low=-1, high=1, shape=(6 + 6 + 3,), dtype=np.float32)  #
      # action = 6 joint angles
      self.action_space = spaces.Box(
          low=-1, high=1, shape=(6,), dtype=np.float32)  #

    else:
      # observation = 4 joints + 4 velocities + 2 coordinates for target
      self.observation_space = spaces.Box(
          low=-1, high=1, shape=(4 + 4 + 2,), dtype=np.float32)  #
      # action = 4 joint angles
      self.action_space = spaces.Box(
          low=-1, high=1, shape=(4,), dtype=np.float32)  #

    super().__init__()
Esempio n. 2
0
class Cube(object):

    def __init__(self, robot_id, spawn="linear"):
        assert spawn in ["linear", "square"]

        self.robot_id = robot_id
        self.spawn = spawn
        self.cube = None
        self.dbo = None

        xml_path = get_scene("ergojr-gripper-cube")
        self.robot_file = URDF(xml_path, force_recompile=True).get_path()

        # # GYM env has to do this
        # self.hard_reset()

    def add_cube(self, y=None, x=None):

        if x is None and self.spawn == "linear":
            x = 0

        if x is None and self.spawn == "square":
            # shorter Y otherwise out of reach
            if y is None:
                y = np.random.uniform(.1, .17)
            x = np.random.uniform(-.12, .12)

        if y is None:
            y = np.random.uniform(.1, .25)

        cube_pos = [x, y, 0]
        cube_rot = p.getQuaternionFromEuler([
            0, 0, np.deg2rad(np.random.randint(0, 180))
        ])  # rotated around which axis? # np.deg2rad(90)

        self.cube = p.loadURDF(
            self.robot_file, cube_pos, cube_rot, useFixedBase=0)

        self.dbo = DistanceBetweenObjects(self.robot_id, 15, self.cube, 0)

    def normalize_cube(self):
        _, posB = self.dbo.query(True)
        x = posB[0]
        y = (posB[1] - GRIPPER_CUBE_Y[0]) / (
            GRIPPER_CUBE_Y[1] - GRIPPER_CUBE_Y[0])
        z = posB[2]
        return np.array([x, y, z])

    def reset(self):
        self.cleanup()
        self.add_cube()

    def cleanup(self):
        if self.cube is not None:
            p.removeBody(self.cube)
Esempio n. 3
0
def load_cube():
    # cube_pos = [0, 0.1, 0.015]
    # cube_pos = [0, 0.25, 0]
    cube_pos = [0, np.random.uniform(.1, .25), 0]
    cube_rot = p.getQuaternionFromEuler([
        0, 0, np.deg2rad(np.random.randint(0, 180))
    ])  # rotated around which axis? # np.deg2rad(90)

    cube = p.loadURDF(robot_file, cube_pos, cube_rot, useFixedBase=0)

    dbo = DistanceBetweenObjects(robot, 15, cube, 0)

    return cube, dbo
Esempio n. 4
0
    def add_cube(self, y=None, x=None):

        if x is None and self.spawn == "linear":
            x = 0

        if x is None and self.spawn == "square":
            # shorter Y otherwise out of reach
            if y is None:
                y = np.random.uniform(.1, .17)
            x = np.random.uniform(-.12, .12)

        if y is None:
            y = np.random.uniform(.1, .25)

        cube_pos = [x, y, 0]
        cube_rot = p.getQuaternionFromEuler([
            0, 0, np.deg2rad(np.random.randint(0, 180))
        ])  # rotated around which axis? # np.deg2rad(90)

        self.cube = p.loadURDF(
            self.robot_file, cube_pos, cube_rot, useFixedBase=0)

        self.dbo = DistanceBetweenObjects(self.robot_id, 15, self.cube, 0)
Esempio n. 5
0
    def add_puck(self):
        self.puck = p.loadURDF(
            self.robot_file, [
                np.random.uniform(PUSHER_PUCK_X[0], PUSHER_PUCK_X[1]),
                np.random.uniform(PUSHER_PUCK_Y[0], PUSHER_PUCK_Y[1]), 0.0
            ],
            p.getQuaternionFromEuler([0, 0, 0]),
            useFixedBase=1)

        for joint in [0, 1]:
            p.setJointMotorControl2(
                self.puck,
                joint,
                p.VELOCITY_CONTROL,
                force=self.friction,
                targetVelocity=0)

        self.dbo = DistanceBetweenObjects(self.puck, 1)
def load_puck():
    puck = p.loadURDF(
        robot_file,
        [np.random.uniform(-0.08, -0.14),
         np.random.uniform(0.05, 0.1), 0.0],
        startOrientation,
        useFixedBase=1)

    jointFrictionForce = .4
    for joint in [0, 1]:
        p.setJointMotorControl2(puck,
                                joint,
                                p.VELOCITY_CONTROL,
                                force=jointFrictionForce,
                                targetVelocity=0)

    dbo = DistanceBetweenObjects(puck, 1)

    return puck, dbo
    def __init__(self,
                 headless=False,
                 simple=False,
                 backlash=False,
                 max_force=1,
                 max_vel=18,
                 goal_halfsphere=False,
                 multi_goal=False,
                 goals=3,
                 gripper=False):
        self.simple = simple
        self.backlash = backlash
        self.max_force = max_force
        self.max_vel = max_vel
        self.multigoal = multi_goal
        self.n_goals = goals
        self.gripper = gripper

        self.goals_done = 0
        self.is_initialized = False
        self.robot = SingleRobot(debug=not headless, backlash=backlash)
        self.ball = Ball()
        self.rhis = RandomPointInHalfSphere(0.0,
                                            0.0369,
                                            0.0437,
                                            radius=RADIUS,
                                            height=0.2610,
                                            min_dist=0.1,
                                            halfsphere=goal_halfsphere)
        self.goal = None
        self.dist = DistanceBetweenObjects(bodyA=self.robot.id,
                                           bodyB=self.ball.id,
                                           linkA=13,
                                           linkB=1)
        self.episodes = 0  # used for resetting the sim every so often
        self.restart_every_n_episodes = 1000

        self.metadata = {'render.modes': ['human']}

        if not simple and not gripper:  # default
            # observation = 6 joints + 6 velocities + 3 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(6 + 6 + 3, ),
                                                dtype=np.float32)  #
            # action = 6 joint angles
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(6, ),
                                           dtype=np.float32)  #

        elif not gripper:  # simple
            # observation = 4 joints + 4 velocities + 2 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(4 + 4 + 2, ),
                                                dtype=np.float32)  #
            # action = 4 joint angles
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(4, ),
                                           dtype=np.float32)  #
        else:  # gripper
            # observation = 3 joints + 3 velocities + 2 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(3 + 3 + 2, ),
                                                dtype=np.float32)  #
            # action = 3 joint angles, [-,1,2,-,4,-]
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(3, ),
                                           dtype=np.float32)  #

        super().__init__()
class ErgoReacherEnv(gym.Env):
    def __init__(self,
                 headless=False,
                 simple=False,
                 backlash=False,
                 max_force=1,
                 max_vel=18,
                 goal_halfsphere=False,
                 multi_goal=False,
                 goals=3,
                 gripper=False):
        self.simple = simple
        self.backlash = backlash
        self.max_force = max_force
        self.max_vel = max_vel
        self.multigoal = multi_goal
        self.n_goals = goals
        self.gripper = gripper

        self.goals_done = 0
        self.is_initialized = False
        self.robot = SingleRobot(debug=not headless, backlash=backlash)
        self.ball = Ball()
        self.rhis = RandomPointInHalfSphere(0.0,
                                            0.0369,
                                            0.0437,
                                            radius=RADIUS,
                                            height=0.2610,
                                            min_dist=0.1,
                                            halfsphere=goal_halfsphere)
        self.goal = None
        self.dist = DistanceBetweenObjects(bodyA=self.robot.id,
                                           bodyB=self.ball.id,
                                           linkA=13,
                                           linkB=1)
        self.episodes = 0  # used for resetting the sim every so often
        self.restart_every_n_episodes = 1000

        self.metadata = {'render.modes': ['human']}

        if not simple and not gripper:  # default
            # observation = 6 joints + 6 velocities + 3 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(6 + 6 + 3, ),
                                                dtype=np.float32)  #
            # action = 6 joint angles
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(6, ),
                                           dtype=np.float32)  #

        elif not gripper:  # simple
            # observation = 4 joints + 4 velocities + 2 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(4 + 4 + 2, ),
                                                dtype=np.float32)  #
            # action = 4 joint angles
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(4, ),
                                           dtype=np.float32)  #
        else:  # gripper
            # observation = 3 joints + 3 velocities + 2 coordinates for target
            self.observation_space = spaces.Box(low=-1,
                                                high=1,
                                                shape=(3 + 3 + 2, ),
                                                dtype=np.float32)  #
            # action = 3 joint angles, [-,1,2,-,4,-]
            self.action_space = spaces.Box(low=-1,
                                           high=1,
                                           shape=(3, ),
                                           dtype=np.float32)  #

        super().__init__()

    def seed(self, seed=None):
        return [np.random.seed(seed)]

    def step(self, action):
        if self.simple or self.gripper:
            action_ = np.zeros(6, np.float32)
            if self.simple:
                action_[[1, 2, 4, 5]] = action
            if self.gripper:
                action_[[1, 2, 4]] = action
            action = action_

        self.robot.act2(action, max_force=self.max_force, max_vel=self.max_vel)
        self.robot.step()

        reward, done, dist = self._getReward()

        obs = self._get_obs()
        return obs, reward, done, {"distance": dist}

    def _getReward(self):
        done = False

        reward = self.dist.query()
        distance = reward.copy()
        if not self.multigoal:  # this is the normal mode
            reward *= -1  # the reward is the inverse distance
            if reward > GOAL_REACHED_DISTANCE:  # this is a bit arbitrary, but works well
                self.goals_done += 1
                done = True
                reward = 1
        else:
            if -reward > GOAL_REACHED_DISTANCE:
                self.goals_done += 1
                if self.goals_done == self.n_goals:
                    done = True
                else:
                    robot_state = self._get_obs()[:8]
                    self.move_ball()
                    self._set_state(
                        robot_state)  # move robot back after ball has movedÒ
                    self.robot.step()
                    reward = self.dist.query()

            reward = (self.goals_done * DIA +
                      (DIA - reward)) / (self.n_goals * DIA)

            if done:
                reward = 1

        if self.gripper:
            reward *= 10
            if self.goals_done == RESET_EVERY:
                self.goals_done = 0
                self.reset(True)
            done = False

            # normalize - [-1,1] range:
            # reward = reward * 2 - 1

        return reward, done, distance

    def _setDist(self):
        self.dist.bodyA = self.robot.id
        self.dist.bodyB = self.ball.id

    def move_ball(self):
        if self.simple or self.gripper:
            self.goal = self.rhis.sampleSimplePoint()
        else:
            self.goal = self.rhis.samplePoint()

        self.dist.goal = self.goal
        self.ball.changePos(self.goal, 4)

        for _ in range(20):
            self.robot.step()  # we need this to move the ball

    def reset(self, forced=False):
        self.goals_done = 0

        self.episodes += 1
        if self.episodes >= self.restart_every_n_episodes:
            self.robot.hard_reset()  # this always has to go first
            self.ball.hard_reset()
            self._setDist()
            self.episodes = 0

        if self.is_initialized:
            robot_state = self._get_state()

        self.move_ball()

        if self.gripper and self.is_initialized:
            self._set_state(
                robot_state[:6])  # move robot back after ball has movedÒ
            self.robot.step()

        if forced or not self.gripper:  # if it's the gripper
            qpos = np.random.uniform(low=-0.2, high=0.2, size=6)

            if self.simple:
                qpos[[0, 3]] = 0

            self.robot.reset()
            self.robot.set(np.hstack((qpos, [0] * 6)))
            self.robot.act2(np.hstack((qpos)))
            self.robot.step()

        self.is_initialized = True

        return self._get_obs()

    def _get_obs(self):
        obs = np.hstack([self.robot.observe(), self.rhis.normalize(self.goal)])
        if self.simple:
            obs = obs[[1, 2, 4, 5, 7, 8, 10, 11, 13, 14]]
        if self.gripper:
            obs = obs[[1, 2, 4, 7, 8, 10, 13, 14]]
        return obs

    def render(self, mode='human', close=False):
        pass

    def close(self):
        self.robot.close()

    def _get_state(self):
        return self.robot.observe()

    def _set_state(self, posvel):
        if self.simple or self.gripper:
            new_state = np.zeros((12), dtype=np.float32)
            if self.simple:
                new_state[[1, 2, 4, 5, 7, 8, 10, 11]] = posvel
            if self.gripper:
                new_state[[1, 2, 4, 7, 8, 10]] = posvel
        else:
            new_state = np.array(posvel)
        self.robot.set(new_state)
Esempio n. 9
0
    debugParams.append(motor)

read_pos = p.addUserDebugParameter("read pos - slide right".format(i + 1), 0,
                                   1, 0)
read_pos_once = True

start = time.time()

rhis = RandomPointInHalfSphere(0.0,
                               0.0369,
                               0.0437,
                               radius=0.2022,
                               height=0.2610,
                               min_dist=0.0477)

dist = DistanceBetweenObjects(bodyA=robot, bodyB=ball.id, linkA=13, linkB=-1)

for i in range(frequency * 30):
    motorPos = []
    for m in range(len(motors)):
        pos = (math.pi / 2) * p.readUserDebugParameter(debugParams[m])
        motorPos.append(pos)
        p.setJointMotorControl2(robot,
                                motors[m],
                                p.POSITION_CONTROL,
                                targetPosition=pos)

    p.stepSimulation()
    time.sleep(1. / frequency)

    link_state = p.getLinkState(robot, 13)
class ErgoReacherHeavyEnv(gym.Env):

  def __init__(self,
               headless=False,
               simple=False,
               max_force=1000,
               max_vel=100,
               goal_halfsphere=False,
               backlash=.1,
               double_goal=False):
    self.simple = simple
    self.max_force = max_force
    self.max_vel = max_vel
    self.double_goal = double_goal

    self.robot = SingleRobot(
        debug=not headless, heavy=True, new_backlash=backlash, silent=True)
    self.ball = Ball(1)
    self.rhis = RandomPointInHalfSphere(
        0.0,
        3.69,
        4.37,
        radius=RADIUS,
        height=26.10,
        min_dist=10.,
        halfsphere=goal_halfsphere)
    self.goal = None
    self.goals_done = 0
    self.goal_dirty = False
    self.dist = DistanceBetweenObjects(
        bodyA=self.robot.id, bodyB=self.ball.id, linkA=19, linkB=1)
    self.episodes = 0  # used for resetting the sim every so often
    self.restart_every_n_episodes = 1000

    self.force_urdf_reload = False

    self.metadata = {'render.modes': ['human']}

    if not simple:
      # observation = 6 joints + 6 velocities + 3 coordinates for target
      self.observation_space = spaces.Box(
          low=-1, high=1, shape=(6 + 6 + 3,), dtype=np.float32)  #
      # action = 6 joint angles
      self.action_space = spaces.Box(
          low=-1, high=1, shape=(6,), dtype=np.float32)  #

    else:
      # observation = 4 joints + 4 velocities + 2 coordinates for target
      self.observation_space = spaces.Box(
          low=-1, high=1, shape=(4 + 4 + 2,), dtype=np.float32)  #
      # action = 4 joint angles
      self.action_space = spaces.Box(
          low=-1, high=1, shape=(4,), dtype=np.float32)  #

    super().__init__()

  def seed(self, seed=None):
    return [np.random.seed(seed)]

  def step(self, action):
    if self.simple:
      action_ = np.zeros(6, np.float32)
      action_[[1, 2, 4, 5]] = action
      action = action_

    self.robot.act2(action, max_force=self.max_force, max_vel=self.max_vel)
    self.robot.step()
    self.robot.step()
    self.robot.step()

    reward, done = self._getReward()

    obs = self._get_obs()
    return obs, reward, done, {}

  def _getReward(self):
    done = False

    reward = self.dist.query()
    reward *= -1  # the reward is the inverse distance

    if not self.double_goal:  # this is the normal mode
      if reward > -1.6:  # this is a bit arbitrary, but works well
        done = True
        reward = 1
    else:
      if reward > -1.6:
        self.goals_done += 1
        if self.goals_done == MAX_GOALS:
          done = True
        else:
          self.move_ball()
          self.goal_dirty = True

      max_multiplier = (MAX_GOALS - self.goals_done - 1)
      if self.goal_dirty:
        max_multiplier += 1
        self.goal_dirty = False

      # unnormalized:
      reward = reward - (RADIUS * 2 * max_multiplier)

      # # normalize - [0,1] range:
      reward = (reward + (RADIUS * 2 * (MAX_GOALS))) / (
          RADIUS * 2 * (MAX_GOALS))
      if done:
        reward = 1

      # normalize - [-1,1] range:
      reward = reward * 2 - 1

    return reward, done

  def _setDist(self):
    self.dist.bodyA = self.robot.id
    self.dist.bodyB = self.ball.id

  def update_backlash(self, new_val):
    self.robot.new_backlash = new_val
    self.force_urdf_reload = True
    # and now on the next self.reset() the new modified URDF will be loaded

  def move_ball(self):
    if self.simple:
      self.goal = self.rhis.sampleSimplePoint()
    else:
      self.goal = self.rhis.samplePoint()

    self.dist.goal = self.goal
    self.ball.changePos(self.goal, 4)

    for _ in range(20):
      self.robot.step()  # we need this to move the ball

  def reset(self):
    self.goals_done = 0
    self.goal_dirty = False

    self.episodes += 1
    if self.force_urdf_reload or self.episodes >= self.restart_every_n_episodes:
      self.robot.hard_reset()  # this always has to go first
      self.ball.hard_reset()
      self._setDist()
      self.episodes = 0
      self.force_urdf_reload = False

    self.move_ball()

    qpos = np.random.uniform(low=-0.2, high=0.2, size=6)

    if self.simple:
      qpos[[0, 3]] = 0

    self.robot.reset()
    self.robot.set(np.hstack((qpos, [0] * 6)))
    self.robot.act2(np.hstack((qpos)))
    self.robot.step()

    return self._get_obs()

  def _get_obs(self):
    obs = np.hstack([self.robot.observe(), self.rhis.normalize(self.goal)])
    if self.simple:
      obs = obs[[1, 2, 4, 5, 7, 8, 10, 11, 13, 14]]
    return obs

  def render(self, mode='human', close=False):
    pass

  def close(self):
    self.robot.close()

  def _get_state(self):
    return self.robot.observe()

  def _set_state(self, posvel):
    if self.simple:
      new_state = np.zeros((12), dtype=np.float32)
      new_state[[1, 2, 4, 5, 7, 8, 10, 11]] = posvel
    else:
      new_state = np.array(posvel)
    self.robot.set(new_state)