Esempio n. 1
0
class ChildrenValuePrinter(HumanPrintWrapper):
    def __init__(self, env, value_fun):
        """

    Args:
      value_fun: callable: obs, states -> value, which would be call by key
        `states`
    """
        super().__init__(env)
        self.render_env = SokobanEnv(**env.init_kwargs)
        self.value_fun = value_fun

    def formatted_state_value(self, state):
        return "{:.2f}".format(self.value_fun(states=state)[0][0])

    def build_texts(self, obs, reward, done, info):
        child_values = list()
        state = self.env.clone_full_state()
        value_str = self.formatted_state_value(state)
        for action in range(self.render_env.action_space.n):
            self.render_env.restore_full_state(state)
            self.render_env.step(action)
            child_state = self.render_env.clone_full_state()
            child_value_str = self.formatted_state_value(child_state)
            child_values.append(child_value_str)
        print('Children values: {}'.format(" ".join(child_values)))
        return [
            'Value: {}'.format(value_str),
            'Children values: {}'.format(" ".join(child_values))
        ]
Esempio n. 2
0
def _load_shard_vf(shard,
                   data_files_prefix,
                   env_kwargs,
                   filter_values_fn=None,
                   transform_values_fn=None):
    data = _load_shard(shard, data_files_prefix)
    render_env = SokobanEnv(**env_kwargs)
    data_x = []
    data_y = []
    vf = ValueLoader()
    for vf_for_root in data:
        root = vf.load_vf_for_root(vf_for_root, compressed=True)
        data = vf.dump_vf_for_root(root)
        for env_state, v in data:
            if filter_values_fn:
                if filter_values_fn(v):
                    continue
            if transform_values_fn:
                v = transform_values_fn(v)
            render_env.restore_full_state(env_state)
            ob = render_env.render(mode=render_env.mode)
            data_x.append(ob)
            data_y.append(v)
    data_y = np.asarray(data_y)
    if len(data_y.shape) == 1:
        data_y = data_y.reshape((len(data_y), 1))
    return np.asarray(data_x), data_y, {}
class PolicyFromFullTree(Policy):
    def __init__(self, value_fn, env_kwargs, depth=4):
        self.render_env = SokobanEnv(**env_kwargs)
        self.env_n_actions = self.render_env.action_space.n
        self.value_function = value_fn
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()
        self.depth = depth
        self.nodes = dict()

    def best_actions(self, state):
        # Produce all action sequences
        seq_ = [range(self.env.action_space.n)] * self.depth
        action_seq = list(product(*seq_))
        # print("len(action_seq) {}".format(len(action_seq)))
        for actions in action_seq:
            root_action = actions[0]
            self.env.restore_full_state(state)
            branch_reward = 0
            current_depth = 0
            for action in actions:
                current_depth += 1
                ob, reward, done, _ = self.env.step(action)
                branch_reward += reward
                node = tuple(self.env.clone_full_state())
                if node not in self.nodes:
                    value = self.value_function(
                        states=np.array(node)
                    )  # self.model.predict(np.expand_dims(ob, axis=0))[0]
                    if done:
                        value += 1000
                    self.nodes[node] = (value, branch_reward, current_depth,
                                        root_action, actions[:current_depth])
                else:
                    value, previous_reward, previous_depth, _, _ = self.nodes[
                        node]
                    if previous_depth > current_depth:
                        # if previous_reward > branch_reward:
                        #   assert branch_reward > 10., "{} {}".format(previous_reward, branch_reward)
                        self.nodes[node] = (value, branch_reward,
                                            current_depth, root_action,
                                            actions[:current_depth])
                if done:
                    break
        # self.nodes.values()
        best_node = max(
            self.nodes.keys(),
            key=(lambda node: self.nodes[node][0] + self.nodes[node][1]))
        node_value, branch_reward, current_depth, root_action, actions = self.nodes[
            best_node]
        # print("Distinct leaves {}".format(len(self.nodes)))
        # print("Node value {}, reward {:.1f}, depth {}, action {}, actions {}".format(
        #     node_value, branch_reward, current_depth, root_action, actions))
        return [root_action]
class ValueFromKerasNet(Value, ABC):
    def __init__(self, model, env_kwargs):
        if isinstance(model, str):
            self.model = load_model(model)
        else:
            self.model = model
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()

    def _network_prediction(self, state):
        self.env.restore_full_state(state)
        obs = self.env.render()
        return self.model.predict(np.expand_dims(obs, axis=0))

    def __call__(self, state):
        raise NotImplementedError
class PolicyFromNet(Policy):
    def __init__(self, model, env_kwargs):
        self.render_env = SokobanEnv(**env_kwargs)
        self.env_n_actions = self.render_env.action_space.n
        if isinstance(model, str):
            self.model = load_model(model)
        else:
            self.model = model
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()
        assert len(self.model.outputs) == 1

    def best_actions(self, state):
        self.env.restore_full_state(state)
        ob = self.env.render()
        policy = self.model.predict(np.expand_dims(ob, axis=0))[0]
        best_actions = [np.argmax(policy)]
        return best_actions
class QFromV(object):
    def __init__(self,
                 value_function,
                 env_kwargs,
                 nan_for_zero_value=True,
                 copy_negative=True):
        self.value_function = value_function
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()
        self.nan_for_zero_value = nan_for_zero_value
        self.copy_negative_values = copy_negative

    @property
    def env_n_actions(self):
        return self.env.action_space.n

    def q_values(self, state):
        q_values = list()
        if self.nan_for_zero_value:
            # Value might not have children for Sokoban success states.
            if self.value_function(states=state) == 0:
                return [np.nan] * self.env_n_actions
        if self.copy_negative_values:
            # For speed-up
            val = self.value_function(states=state)[0]
            if val < 0:
                return [val] * self.env_n_actions

        for action in range(self.env_n_actions):
            self.env.restore_full_state(state)
            ob, reward, done, _ = self.env.step(action)
            value = reward
            child_state = self.env.clone_full_state()
            if not done:
                value += self.value_function(states=child_state)[0]
            q_values.append(float(value))
        return q_values
Esempio n. 7
0
def _load_shard_best_action_ignore_finall(shard, data_files_prefix,
                                          env_kwargs):
    """ Choose best action

  If all actions are equally good, give special target value (equal to
  env.action_space.n). For Sokoban this will separate dead ends.
  (for which there is no good action).
  """
    boards = _load_shard(shard, data_files_prefix)
    render_env = SokobanEnv(**env_kwargs)
    data_x = []
    data_y = []
    data_value = []
    vf = ValueLoader()
    policy = PolicyFromValue(vf, env_kwargs)
    assert policy.env_n_actions == render_env.action_space.n
    for vf_for_root in boards:
        root = vf.load_vf_for_root(vf_for_root, compressed=True)
        data = vf.dump_vf_for_root(root)
        for node_state, v in data:
            if v in [0, -float("inf")]:
                # TODO(kc): ValuePerfect does not produce some states which can be
                # obtained after solving game. How to clean it up?
                continue

            render_env.restore_full_state(node_state)
            ob = render_env.render(mode=render_env.mode)
            data_x.append(ob)
            best_actions = policy.act(node_state, return_single_action=False)
            y = np.min(best_actions)
            one_hot_y = np.zeros(shape=render_env.action_space.n, dtype=np.int)
            one_hot_y[y] = 1
            data_y.append(one_hot_y)
            data_value.append(v)
    return np.asarray(data_x), np.asarray(data_y), \
           dict(value=np.asarray(data_value))
Esempio n. 8
0
def process_board_data(compressed_data, target, env_kwargs, sample_data,
                       max_sample_size, random_state):
    """

  Args:
    compressed_data: dictionary with keys containing ["full_env_state",
      "perfect_value",  "perfect_q"], mapping to compressed arrays.
  """
    render_env = SokobanEnv(**env_kwargs)
    keys = compressed_data.keys()
    assert_v2_keys(compressed_data)

    data = {key: decompress_np_array(compressed_data[key]) for key in keys}
    assert_env_and_state_match(env_kwargs, data["full_env_state"][0])

    filter_values_fn = lambda v, q: False

    stratified_sample_fn = lambda values, q: stratified_sample(
        values, q, max_sample_size, random_state)
    simple_sample_fn = lambda values, q: simple_sample(
        values, q, max_sample_size, random_state)

    if target == Target.VF:
        sample_fn = stratified_sample_fn
    elif target == Target.VF_SOLVABLE_ONLY:
        filter_values_fn = lambda v, q: not is_solvable_state(v, q)
        sample_fn = simple_sample_fn
    elif target == Target.STATE_TYPE:
        sample_fn = stratified_sample_fn
    elif target == Target.BEST_ACTION:
        filter_values_fn = lambda v, q: not is_solvable_state(v, q)
        sample_fn = simple_sample_fn
    elif target == Target.VF_AND_TYPE:
        sample_fn = stratified_sample_fn
    elif target == Target.NEXT_FRAME:
        sample_fn = stratified_sample_fn
    elif target == Target.DELTA_VALUE:
        sample_fn = stratified_sample_fn
    elif target == Target.VF_DISCOUNTED:
        sample_fn = stratified_sample_fn
    elif target == Target.BEST_ACTION_FRAMESTACK:
        filter_values_fn = lambda v, q: not is_solvable_state(v, q)
        sample_fn = simple_sample_fn
    elif target == Target.NEXT_FRAME_AND_DONE:
        sample_fn = stratified_sample_fn
    else:
        raise ValueError("Unknown target {}".format(target))

    mask = ~np.array([
        filter_values_fn(v, q)
        for v, q in zip(data['perfect_value'], data['perfect_q'])
    ],
                     dtype=np.bool)
    data = {key: data[key][mask] for key in keys}
    if sample_data:
        sample_ix = sample_fn(data["perfect_value"], data["perfect_q"])
    else:
        raise NotImplemented()

    if target == Target.DELTA_VALUE:
        data_x, data_y = extract_delta_value(data, sample_ix, render_env,
                                             random_state)
    elif target == Target.VF_DISCOUNTED:
        data_x, data_y = extract_discounted_value(
            sample_ix,
            states=data["full_env_state"],
            perfect_v=data["perfect_value"],
            perfect_q=data["perfect_q"],
            render_env=render_env,
        )
    elif target == Target.BEST_ACTION_FRAMESTACK:
        data_x, data_y = extract_best_action_from_framestack(
            sample_ix,
            states=data["full_env_state"],
            perfect_v=data["perfect_value"],
            perfect_q=data["perfect_q"],
            render_env=render_env,
        )
    else:
        data = {key: data[key][sample_ix] for key in keys}
        if target == Target.NEXT_FRAME:
            data_x, data_y = extract_next_frame_input_and_target(
                data["full_env_state"], render_env)
        else:
            obs = list()
            for node_state in data['full_env_state']:
                render_env.restore_full_state(node_state)
                ob = render_env.render(mode=render_env.mode)
                obs.append(ob)
            data_x = np.array(obs)
            data_y = extract_target_from_value(perfect_v=data["perfect_value"],
                                               perfect_q=data["perfect_q"],
                                               target=target)
    if isinstance(data_y, np.ndarray):
        assert len(data_y.shape) > 1, "data_y should be batched (if target is " \
                                      "scalar it should have shape (num_samples, 1))"
    return data_x, data_y, {}