Esempio n. 1
0
def petersen_plot(fname, minValueFirst):
    #directory = '/home/janne/Gunter_project/44_tau/example_3ms/LOGS-1'
    list_number = [
        os.path.join(fname, file) for file in sorted(os.listdir(fname))
        if file.endswith('-freqs.dat')
    ]
    constraint_noprems = 480
    periods = []
    ratios = []
    minima = []
    alle = []

    for file in list_number:
        #file.sort(key=lambda x: '{0:0>20}'.format(x))
        pnum = re.search('profile(.+?)-freqs', file)
        if pnum:
            pnums = pnum.group(1)
        if int(pnums) >= int(constraint_noprems):
            #print(pnums)

            freqs = gyr.readmesa(file)
            if size(freqs) == 1:
                continue
            if not freqs[0][1] == 1 and freqs[1][1] == 2:
                continue

            allfrequencies = [freqs[0][4] / freqs[1][4], file, pnums]

            rat = freqs[0][4] / freqs[1][4]

            currentValueFirst = np.abs(rat - r)

            if minValueFirst == None:
                minValueFirst = currentValueFirst
            else:
                minValueFirst = min(minValueFirst, currentValueFirst)

            minima += [minValueFirst, pnums]
            ratios += [freqs[0][4] / freqs[1][4]]
            periods += [1. / freqs[0][4]]
            alle.append(allfrequencies)

    plt.plot(np.log10(1. / radial_funda), observed_ratio, 'k*')
    #legend()
    plt.plot(np.log10(periods), ratios, 'r-')
    #plt.gca().invert_xaxis()
    # plt.gca().invert_yaxis()
    ylabel(r'$\Pi_1/\Pi_0$')
    xlabel(r'$log\Pi_0$')
    plt.rcParams.update({'font.size': 15})

    return alle, minValueFirst, ratios, periods
def getfundfreqs(fname):
    constraint_noprems = 400
    fnumbers = []
    alle = []
    #fname = '/home/janne/Gunter_project/44_tau/output_postms_3ms/LOGS-1.5-0.02-0.7-0.2/'
    
    for root, dirs, files in sorted(os.walk(fname)):
            files.sort(key=lambda x: '{0:0>20}'.format(x)) 
            for file in files:
                if not file.endswith('freqs.dat'): #and os.path.exists(file)==True:
                    continue 
                
                fdires = os.path.join(root,file)
                fdirec = os.path.join(root)
                finaldir = fdirec.strip("/")
                fdata = gar.readmesa(fdires)
                dire = finaldir.split('-')
                mass = float(dire[1])
                z    = float(dire[2])
                y    = float(dire[3])
                mlt  = float(dire[4])
                #ove  = [float(dire[5])]
                
                if fdata[0][1] == 1 and fdata[1][1] == 2:
                        fnum = re.search('profile(.+?)-freqs.dat', fdires)
                        
                        if fnum: 
                           fnums = fnum.group(1)
                        if int(fnums) >= int(constraint_noprems): 
                            
                            
                            fnumbers += [fnums]
                            
                            #STRUCTURE: radial fundamental, radial first, mass, z, y, mixing-length, profile number
                            alle += [[fdata[0][4], fdata[1][4], mass, z, y, mlt, fnums]]
    np.asarray(alle)
    np.savetxt("test1.txt", alle, delimiter=",", newline = "\n", fmt="%s")
    #np.savetxt('test1.txt', alle, fmt='%10d' )
    return 

#getfundfreqs('/home/janne/Gunter_project/44_tau/output_postms_3ms/LOGS-1.5-0.02-0.7-0.2/')
def allfreqs(fname):
    alldata = []
    alle = []
    print(fname)
    for root, dirs, files in sorted(os.walk(fname)):
        for file in files:
            if not file.endswith(
                    'freqs.dat'):  #and os.path.exists(file)==True:
                continue
            dires = os.path.join(root, file)
            #data = gar.readmesa(list_number[file])
            data = gar.readmesa(dires)
            #print(data)

            if data[0][1] == 1 and data[1][1] == 2:
                alle += [data, dires]
                #print(alldata)
                #dataset += []
        #print(file, len(dataset))
            alldata += [alle]
    return alldata
Esempio n. 4
0
def get_freqs(fname):
    alle = []
    fnumbers = []
    allobs = []

    for root, dirs, files in sorted(os.walk(fname)):
        files.sort(key=lambda x: '{0:0>20}'.format(x))
        for file in files:
            if not file.endswith(
                    'freqs.dat'):  #and os.path.exists(file)==True:
                continue

            fdires = os.path.join(root, file)
            fdata = gar.readmesa(fdires)

            if fdata[0][1] == 1 and fdata[1][1] == 2:
                fnum = re.search('profile(.+?)-freqs.dat', fdires)

                if fnum:
                    fnums = fnum.group(1)
                if int(fnums) >= int(constraint_noprems):

                    chi_radial = (np.abs(radial_funda - fdata[0][4]) /
                                  radial_funda_unc)**2
                    chi_first = (np.abs(radial_first - fdata[1][4]) /
                                 radial_first_unc)**2

                    fnumbers += [fnums]
                    alle += [[chi_radial, chi_first, fnums]]

    for i in fnumbers:
        #print(i)
        obs = getprofile(fname, i)
        allobs += [obs]

    return alle, allobs
Esempio n. 5
0
# -*- coding: utf-8 -*-
"""
Created on Fri Nov  2 15:21:06 2018

@author: janne

data.dtype.names
"""
import gyre_output_read as gar
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import seaborn as sns
from pylab import *

data, header = gar.readmesa(
    '/home/janne/Gunter_project/gunther_project/44_tau/44tau_nad_output.txt')

harm_degree = data['l']
radial_order = data['n_pg']
acou_num = data['n_p']
grav_num = data['n_g']
#re_omega = data['Re(omega)']
#im_omega = data['Im(omega)']
#re_omega_int = data['Re(omega_int)']
#m_omega_int = data['Im(omega_int)']
re_freq = data[
    'Refreq']  # these are the frequencies that will be compared to Lenz and observations.
im_freq = data['Imfreq']  #imaginary part of frequencies are not observable.

cd_to_mhz = 11.58
freq_obs = [
Esempio n. 6
0
def chis(fname, profname):
    finalarray = []
    bm_array2 = []
    models = 'profile{}-freqs.dat'.format(profname)

    for root, dirs, files in sorted(os.walk(fname)):
        for file in files:
            if not file.startswith(models):  #and os.path.exists(file)==True:
                continue

            names = []
            dires = os.path.join(root, file)

            data = gar.readmesa(dires)

            harm_degree = data['l']
            radial_order = data['n_pg']
            re_freq_theo = data[
                'Refreq']  # these are the frequencies that will be compared to Lenz and observations.
            #im_freq = data['Imfreq'] #imaginary part of frequencies are not observable.
            #print(re_freq_theo)

            re_freq_obs = [6.8980, 8.9607, 11.20, 13.48]
            re_freq_obs_unc = [
                2.762223525 * 10**(-7), 8.454940424 * 10**(-7), 1 * 10**(-7),
                1 * 10**(-7)
            ]
            #print(len(np.atleast_1d(re_freq_theo)))
            #re_freq_obs_unc = np.ones(len(re_freq_obs)) * 0.1
            remaining_obs = re_freq_obs
            #remaining_obs_unc = freq_obs_uncertainties
            remaining_theo = np.atleast_1d(re_freq_theo)
            remaining_ells = np.atleast_1d(harm_degree)
            remaining_radial = np.atleast_1d(radial_order)

            best_matching = []
            #names = []

            for ii in range(
                    min(len(np.atleast_1d(re_freq_theo)), len(re_freq_obs))
            ):  #default: freq_obs, but depends if freq_obs is longer than re_freq
                best = np.inf
                bestjj = -1
                bestkk = -1

                #print(len(remaining_obs))

                for jj in range(len(np.atleast_1d(remaining_theo))):
                    for kk in range(len(remaining_obs)):
                        val = (remaining_theo[jj] -
                               remaining_obs[kk])**2 / 4  #put uncertainty here
                        if (val < best):
                            best = val
                            bestjj = jj
                            bestkk = kk

                            # print(best, bestjj, bestkk)
                best_matching += [[
                    remaining_ells[bestjj], remaining_radial[bestjj],
                    remaining_theo[bestjj], remaining_obs[bestkk]
                ]]

                remaining_theo = np.delete(remaining_theo, bestjj)
                remaining_ells = np.delete(remaining_ells, bestjj)
                remaining_obs = np.delete(remaining_obs, bestkk)
                #remaining_obs_unc = np.delete(remaining_obs_unc, bestkk)
                remaining_radial = np.delete(remaining_radial, bestjj)

            bm_array = np.asarray(best_matching)

            bm_array2 += [bm_array]
            finalarray += [[bm_array, file]]

    #print(finalarray)
    #print(bm_array2)

    temp = []

    for i in range(len(bm_array2)):
        if len(bm_array2[i]) >= 2:

            #farr += finalarray.pop(i)
            temp.append(finalarray[i])
        #else:
        #print(finalarray[i][1])

    finalarray = temp

    chi2 = np.zeros(len(finalarray))
    modelnos = np.zeros(len(finalarray))
    #print(len(finalarray))
    #number = []
    for i, (array, modelno) in enumerate(finalarray):
        array = np.asarray(array)
        if len(array) == 4:

            m = re.search('profile(.+?)-freqs.dat', modelno)

            if m:
                modelnos[i] = m.group(1)
                #print(modelnos)

            delta = array[:, 2] - array[:, 3]
            chi2[i] = np.sum((delta**2) / (np.asarray(re_freq_obs_unc)**2))

            chi2[i] /= len(delta)
            #test_result.append(modelnos + chi2)

            test_result = np.zeros((len(chi2), 2))
            #rint(test_result)
            for i in range(0, len(modelnos)):
                test_result[i][0] = modelnos[i]
                test_result[i][1] = chi2[i]

    print(modelnos)
    print(chi2)

    #print(test_result)
    #print(results)
    return test_result, finalarray


#c = '/home/janne/Gunter_project/44_tau/example_zs/LOGS-2.0-0.022-0.29-1.5'
#a = '/home/janne/Gunter_project/gunther_project/LOGS_44_tau_testrun/'
#b = '/home/janne/Gunter_project/44_tau/example_3ms/LOGS-1'
#
#results = chis(b, '14')
Esempio n. 7
0
        file) for file in os.listdir(
            '/home/janne/Gunter_project/gunther_project/LOGS_44_tau_testrun/')
    if file.endswith('.dat')
]
finalarray = []
names = []
bm_array2 = []
for file in range(len(list_number)):
    if file == 4 or file == 6:
        continue

    #if os.path.exists(file)==False:
    #    continue
    #print(file)

    data = gar.readmesa(list_number[file])

    harm_degree = data['l']
    radial_order = data['n_pg']
    #acou_num = data['n_p']
    #grav_num = data['n_g']
    #re_omega = data['Re(omega)']
    #im_omega = data['Im(omega)']
    #re_omega_int = data['Re(omega_int)']
    #m_omega_int = data['Im(omega_int)']
    re_freq_theo = data[
        'Refreq']  # these are the frequencies that will be compared to Lenz and observations.
    #im_freq = data['Imfreq'] #imaginary part of frequencies are not observable.

    #print(re_freq_theo)
def to_get_chi2(fname):

    filename = 'results_l012.txt'
    final_list = []

    with open(filename) as f:
        for line in f:
            inner_list = [elt.strip() for elt in line.split(',')]
            final_list.append(inner_list)

    a = np.asarray(final_list)
    profnums = a[:, 4]
    finalarray = []
    bm_array2 = []
    #fname = '/home/janne/Gunter_project/44_tau/output_postms_3ms/LOGS-1.5-0.02-0.7-0.2'

    for h in profnums:
        direc = fname + '/profile' + h + '-freqs.dat'

        #dires = os.path.join(root,file)
        data = gar.readmesa(direc)
        harm_degree = data['l']
        radial_order = data['n_pg']

        re_freq_theo = data[
            'Refreq']  # these are the frequencies that will be compared to Lenz and observations.
        #im_freq = data['Imfreq'] #imaginary part of frequencies are not observable.
        #print(re_freq_theo)

        re_freq_obs = [
            6.8980, 7.0060, 9.1175, 11.5196, 8.9606, 9.5613, 7.3034, 6.7953,
            9.5801, 6.3391, 8.6393, 11.2919
        ]
        re_freq_obs_unc = np.ones(len(re_freq_obs)) * 10**(-7)
        #print(len(np.atleast_1d(re_freq_theo)))
        #re_freq_obs_unc = np.ones(len(re_freq_obs)) * 0.1
        remaining_obs = re_freq_obs
        #remaining_obs_unc = freq_obs_uncertainties
        remaining_theo = np.atleast_1d(re_freq_theo)
        remaining_ells = np.atleast_1d(harm_degree)
        remaining_radial = np.atleast_1d(radial_order)

        best_matching = []
        #names = []

        for ii in range(
                min(len(np.atleast_1d(re_freq_theo)), len(re_freq_obs))
        ):  #default: freq_obs, but depends if freq_obs is longer than re_freq
            best = np.inf
            bestjj = -1
            bestkk = -1

            #print(len(remaining_obs))

            for jj in range(len(np.atleast_1d(remaining_theo))):
                for kk in range(len(remaining_obs)):
                    val = (remaining_theo[jj] -
                           remaining_obs[kk])**2 / 4  #put uncertainty here
                    if (val < best):
                        best = val
                        bestjj = jj
                        bestkk = kk

                        # print(best, bestjj, bestkk)
            best_matching += [[
                remaining_ells[bestjj], remaining_radial[bestjj],
                remaining_theo[bestjj], remaining_obs[bestkk]
            ]]

            remaining_theo = np.delete(remaining_theo, bestjj)
            remaining_ells = np.delete(remaining_ells, bestjj)
            remaining_obs = np.delete(remaining_obs, bestkk)
            #remaining_obs_unc = np.delete(remaining_obs_unc, bestkk)
            remaining_radial = np.delete(remaining_radial, bestjj)

            #diff = np.asarray(diff)
            #final = np.append(bm_array,diff)

        bm_array = np.asarray(best_matching)
        bm_array2 += [bm_array]
        finalarray += [[bm_array, h]]

    chi2sum = {}

    for i in range(len(finalarray)):
        for k in range(len(finalarray[i][0])):
            pname = finalarray[i][1]
            if pname not in chi2sum.keys():
                chi2sum[pname] = 0
            chi2sum[pname] = chi2sum[pname] + (
                np.abs(finalarray[i][0][k][2] - finalarray[i][0][k][3]) / 1 *
                10**(-7))**2

    kolonne = chi2sum.values()

    output = np.column_stack((final_list, list(kolonne)))

    np.savetxt("results_l012.txt",
               output,
               delimiter=",",
               newline="\n",
               fmt="%s")
    return kolonne


#kolonne = to_get_chi2('/home/janne/Gunter_project/44_tau/output_postms_3ms/LOGS-1.5-0.02-0.7-0.2', 'test3.txt')
Esempio n. 9
0
dire = '/home/janne/Gunter_project/44_tau/example_3ms/LOGS-3'
l = mr.MesaLogDir('/home/janne/Gunter_project/44_tau/example_3ms/LOGS-3')
time_age = []
fund_freqs = []
modelno = []
for root, dirs, files in sorted(os.walk(dire)):
    files.sort(key=lambda x: '{0:0>20}'.format(x))
    #natsorted(files, key=lambda y: y.lower())
    for file in files:
        if file.endswith('freqs.dat'):  #and os.path.exists(file)==True:

            dires = os.path.join(root, file)
            #print(dires)
            #print(dires)
            data = gar.readmesa(dires)
            re_freq_theo = data['Refreq']

            radial_order = data['n_pg']

            if radial_order[0] == 1:

                re_freq_fund = re_freq_theo[1]

                #print(re_freq_fund)

                m = re.search('profile(.+?)-freqs.dat', file)

                if m:
                    modelnos = m.group(1)
                    #print(modelno)
Esempio n. 10
0
            '/home/janne/Gunter_project/44_tau/example_10_masses/LOGS-1.50-0.02-0.7-0.4'
        )):
    files.sort(key=lambda x: '{0:0>20}'.format(x))
    for file in files:

        if file.endswith('freqs.dat'):

            gyredirs = os.path.join(root, file)
            gyreroots = os.path.join(root)
            gnum = re.search('profile(.+?)-freqs.dat', gyredirs)

            if gnum:
                gnums = gnum.group(1)
            if int(gnums) >= int(constraint_noprems):
                #print(gnums)
                freqs = gyr.readmesa(gyredirs)

                if freqs[0][1] == 1 and freqs[1][1] == 2:
                    difference_funda = np.abs(freqs[0][4] - radial_funda)
                    difference_first = np.abs(freqs[1][4] - radial_first)
                    #differences.append()

                    currentValue = difference_funda

                    if minValue == None:
                        minValue = currentValue
                    else:
                        minValue = min(minValue, currentValue)

                    differences.append(difference_funda)
                    temp2 = [gyredirs, difference_funda]
Esempio n. 11
0
def onedir(fname):
    Log_Teff_obs = 3.839
    #Log_L_obs = 1.340
    Log_g_obs = 3.6
    
    Log_Teff_obs_unc = 0.007
    #Log_L_obs_unc = 0.0065 
    Log_g_obs_unc = 0.1
    
    n = 3
    
    Log_Teff_ns = n*Log_Teff_obs_unc
    #Log_L_ns = n*Log_L_obs_unc
    Log_g_ns = n*Log_g_obs_unc
    
    Log_Teff_lower = Log_Teff_obs - Log_Teff_ns
    Log_Teff_upper = Log_Teff_obs + Log_Teff_ns
    #Log_L_lower = Log_L_obs - Log_L_ns
    #Log_L_upper = Log_L_obs + Log_L_ns
    Log_g_upper = Log_g_obs + Log_g_ns
    Log_g_lower = Log_g_obs - Log_g_ns
    
    radial_funda = 6.8980
    #radial_first = 8.9606
    
    #l = 10
    #radial_unc = l* 0.05
    #radial_funda_lower = radial_funda - radial_unc
    #radial_funda_upper = radial_funda + radial_unc
    #radial_first_upper = radial_first + radial_unc
    #radial_first_lower = radial_first - radial_unc

    frequencies = []
    frequency_dirs = []
    frequency_roots = []
    temp = []
    dires = []
    test_result = []
    logg_dires = []
    diffsndirs = []
    minimum = []


    for root, dirs, files in sorted(os.walk(fname)):
        logdirs = os.path.join(root)
        dires += [logdirs]
        for file in files:
            
            if file.startswith('history'):
                  
                    #print(os.path.join(root,file))
                direcs = os.path.join(root,file)
                rooties = os.path.join(root)
                #print(natsort.natsorted(dirs,reverse=True))
                
                h = mr.MesaData(direcs)
                mass = h.initial_mass
                model = h.model_number
                index = h.star_age > 2.0e7
                noms_model = model[index]
                noms_logg = h.log_g[index]
                
                
                logg_dir = [noms_logg, noms_model, rooties]
                logg_dires.append(logg_dir)
               
                noms_Teff = h.log_Teff[index]
                noms_L = h.log_L[index]
        
                test_result = np.zeros((len(noms_model),3))
                #rint(test_result)
                for i in range(0,len(noms_model)):
                    test_result[i][0] = noms_model[i]
                    test_result[i][1] = noms_logg[i]
                    test_result[i][2] = noms_Teff[i]
               
                plt.plot(noms_Teff, noms_logg, '-',label='M=%s' %mass)
            
            if file.startswith('profile') and file.endswith('.data'):
                
                profiledirs = os.path.join(root,file)
                
                pnum = re.search('profile(.+?).data', profiledirs)
            
                if pnum: 
                    pnums = pnum.group(1)  
                
                profiles_indir = mr.MesaLogDir(fname)
                pr = profiles_indir.profile_data(profile_number=pnums)
                pr_modelnos = pr.model_number
                
                
                if pr_modelnos == noms_model[0]:
                    cutoff = pnums
        
            if file.endswith('freqs.dat'):
                gyredirs = os.path.join(root,file)
                gyreroots = os.path.join(root)
                fnum = re.search('profile(.+?)-freqs.dat', gyredirs)
            
                if fnum: 
                    fnums = fnum.group(1)  
                if int(cutoff) <= int(fnums):
                    #print(fnums)
                    
                    #print(gyredirs)
                    
                    freqs = gyr.readmesa(gyredirs)
                    
                    frequencies += [freqs]
                    frequency_dirs += [gyredirs]
                    frequency_roots += [gyreroots]
                    allfreqs = [freqs ,gyredirs,gyreroots]
                    temp.append(allfreqs)
    
    profiles = []
    differs = []
    temp3 = []
    minValue = None
    
    
    for i in range(0,len(temp)):
        if size(temp[i][0]) ==1:
            continue
        if temp[i][0][0][1] == 1 and temp[i][0][1][1] == 2:
            #print('hej')
            
            succesfull_profiles = temp[i][1]
            profile_directories = temp[i][2]
            difference = np.abs(temp[i][0][0][4]-radial_funda)
            #print(difference)
            
            #difference_next = np.abs(temp[i+1][0][0][4]-radial_funda)
           
            currentValue = difference
            
            if minValue == None:
                minValue = currentValue
            else:
                minValue = min(minValue, currentValue)
                
        
            temp2 = [succesfull_profiles, difference]
            diffsndirs.append(temp2)
            
            profiles.append(profile_directories)
            differs.append(difference)
    
    minimum = differs.index(minValue)
    minimum_profile = diffsndirs[minimum]
    
    gnum = re.search('profile(.+?)-freqs.dat', minimum_profile[0])
            
    if gnum: 
        gnums = gnum.group(1)        
        
    profiledata = mr.MesaLogDir(fname)
    p = profiledata.profile_data(profile_number=gnums)
    
    teff = p.Teff
    #print(teff)
    logteff = np.log10(teff)
    lmodel = p.photosphere_L
    logl = np.log10(lmodel)
    modelno_profile = p.model_number 
    
    entry = np.where(logg_dires[0][1]== modelno_profile)
    best_logg = logg_dires[0][0][entry]
    
    plt.plot(logteff,best_logg,'k.', MarkerSize = 15)
    
    """

    results_final = []

    for root, dirs, files in sorted(os.walk('/home/janne/Gunter_project/44_tau/example_3ms/')):
        for dire in dirs:
            plt.figure(dire)
            dires = os.path.join(root,dire)
            #print(dires)
            results = petersen_plot(dires)
            results_final.append(results)
            #print(results)
            
            results
        #print(logteff)           
                    
    
    #alllogteffs.append(logteffs)
    
    #plt.plot([alllogteffs[i][0],alllogteffs[i][-1]],[working_logg_dires[0], working_logg_dires[-1]],'k--') 
    
    """

    # set axis labels
    xlabel(r'$\logT_{eff}$')
    ylabel(r'$\log(g)$')
    legend()
    plt.gca().invert_xaxis()
    plt.gca().invert_yaxis()
    plt.rcParams.update({'font.size': 20})
    

    #PLOT ERRORBOX:

    plt.plot([Log_Teff_lower, Log_Teff_upper, Log_Teff_upper, Log_Teff_lower, Log_Teff_lower], [Log_g_lower, Log_g_lower, Log_g_upper, Log_g_upper, Log_g_lower], 'r-.', alpha=0.5, linewidth=3)
    
    return best_logg,logteff
Esempio n. 12
0
def chis(fname):
    finalarray = []
    bm_array2 = []

    for root, dirs, files in sorted(os.walk(fname)):
        for file in files:
            if not file.endswith(
                    'freqs.dat'):  #and os.path.exists(file)==True:
                continue

            #print(file)
            names = []
            #      continue
            dires = os.path.join(root, file)
            #data = gar.readmesa(list_number[file])
            data = gar.readmesa(dires)
            #print(dires, data)
            #print(dires)
            harm_degree = data['l']
            radial_order = data['n_pg']

            #print(type(harm_degree))

            #acou_num = data['n_p']
            #grav_num = data['n_g']
            #re_omega = data['Re(omega)']
            #im_omega = data['Im(omega)']
            #re_omega_int = data['Re(omega_int)']
            #m_omega_int = data['Im(omega_int)']
            re_freq_theo = data[
                'Refreq']  # these are the frequencies that will be compared to Lenz and observations.
            #im_freq = data['Imfreq'] #imaginary part of frequencies are not observable.
            #print(re_freq_theo)

            re_freq_obs = [6.8980, 8.9607]
            re_freq_obs_unc = [2.762223525 * 10**(-7), 8.454940424 * 10**(-7)]
            #print(len(np.atleast_1d(re_freq_theo)))
            #re_freq_obs_unc = np.ones(len(re_freq_obs)) * 0.1
            remaining_obs = re_freq_obs
            #remaining_obs_unc = freq_obs_uncertainties
            remaining_theo = np.atleast_1d(re_freq_theo)
            remaining_ells = np.atleast_1d(harm_degree)
            remaining_radial = np.atleast_1d(radial_order)

            best_matching = []
            #names = []

            for ii in range(
                    min(len(np.atleast_1d(re_freq_theo)), len(re_freq_obs))
            ):  #default: freq_obs, but depends if freq_obs is longer than re_freq
                best = np.inf
                bestjj = -1
                bestkk = -1

                #print(len(remaining_obs))

                for jj in range(len(np.atleast_1d(remaining_theo))):
                    for kk in range(len(remaining_obs)):
                        val = (remaining_theo[jj] -
                               remaining_obs[kk])**2 / 4  #put uncertainty here
                        if (val < best):
                            best = val
                            bestjj = jj
                            bestkk = kk

                            # print(best, bestjj, bestkk)
                best_matching += [[
                    remaining_ells[bestjj], remaining_radial[bestjj],
                    remaining_theo[bestjj], remaining_obs[bestkk]
                ]]

                remaining_theo = np.delete(remaining_theo, bestjj)
                remaining_ells = np.delete(remaining_ells, bestjj)
                remaining_obs = np.delete(remaining_obs, bestkk)
                #remaining_obs_unc = np.delete(remaining_obs_unc, bestkk)
                remaining_radial = np.delete(remaining_radial, bestjj)

                #diff = np.asarray(diff)
                #final = np.append(bm_array,diff)

            bm_array = np.asarray(best_matching)

            bm_array2 += [bm_array]
            finalarray += [[bm_array, file]]
            #print(file)
    #print(finalarray)
    #print(bm_array2)
    #print(len(bm_array2[26])) = 1
    #farr = []

    temp = []

    for i in range(len(bm_array2)):
        if len(bm_array2[i]) >= 2:

            #farr += finalarray.pop(i)
            temp.append(finalarray[i])
        #else:
        #print(finalarray[i][1])

    finalarray = temp

    chi2 = np.zeros(len(finalarray))
    modelnos = np.zeros(len(finalarray))
    #print(len(finalarray))
    #number = []
    for i, (array, modelno) in enumerate(finalarray):
        array = np.asarray(array)
        if len(array) == 4:

            m = re.search('profile(.+?)-freqs.dat', modelno)

            if m:
                modelnos[i] = m.group(1)
                #print(modelnos)

            delta = array[:, 2] - array[:, 3]
            chi2[i] = np.sum((delta**2) / (np.asarray(re_freq_obs_unc)**2))

            chi2[i] /= len(delta)
            #test_result.append(modelnos + chi2)

            test_result = np.zeros((len(chi2), 2))
            #rint(test_result)
            for i in range(0, len(modelnos)):
                test_result[i][0] = modelnos[i]
                test_result[i][1] = chi2[i]

                #, chi2[i]]

    #test_results += [test_result]
    #print(len(modelnos))
    #print(modelnos)
    #print(chi2)

    plt.figure()
    plt.plot(modelnos, np.log(chi2), '*', linestyle='None')
    plt.xlabel('profile/model')
    plt.ylabel('log(chi2)')

    #print(test_result)
    #print(results)
    return test_results
Esempio n. 13
0
def massconstrain(fname):

    Log_Teff_obs = 3.839
    Log_g_obs = 3.6

    Log_Teff_obs_unc = 0.007
    #Log_L_obs_unc = 0.0065
    Log_g_obs_unc = 0.1

    n = 3

    Log_Teff_ns = n * Log_Teff_obs_unc
    #Log_L_ns = n*Log_L_obs_unc
    Log_g_ns = n * Log_g_obs_unc

    Log_Teff_lower = Log_Teff_obs - Log_Teff_ns
    Log_Teff_upper = Log_Teff_obs + Log_Teff_ns
    #Log_L_lower = Log_L_obs - Log_L_ns
    #Log_L_upper = Log_L_obs + Log_L_ns
    Log_g_upper = Log_g_obs + Log_g_ns
    Log_g_lower = Log_g_obs - Log_g_ns

    radial_funda = 6.8980
    radial_first = 8.9606

    loggs = []
    logteffs = []
    profile_numbers = []
    alle_final = []
    #best_gs_radial = []
    #best_teffs_radial = []
    #best_gs_first = []
    #best_teffs_first = []

    for root, dirs, files in sorted(os.walk(fname)):
        files.sort(key=lambda x: '{0:0>20}'.format(x))
        for file in files:

            if file.startswith('profile') and file.endswith('.data'):
                profiledirs = os.path.join(root, file)
                profileroots = os.path.join(root)

                constraint_noprems = 450

                pnum = re.search('profile(.+?).data', profiledirs)

                if pnum:
                    pnums = pnum.group(1)
                if int(pnums) >= int(constraint_noprems):
                    #print(pnums)

                    profiles_indir = mr.MesaLogDir(fname)
                    pr = profiles_indir.profile_data(profile_number=pnums)
                    pr_modelnos = pr.model_number

                    teff = pr.Teff
                    #logteff = np.log(teff)r = pr.photosphere_r
                    r = pr.photosphere_r
                    m = pr.initial_mass
                    m_solar = 1.9892 * 10**(33)
                    r_solar = 6.9598 * 10**(10)
                    R = r * r_solar
                    M = m * m_solar
                    G = 6.67428 * 10**(-8)
                    #logg = np.log(g)
                    g = G * M / R**2

                    profile_numbers.append(pnums)
                    loggs.append(g)
                    logteffs.append(teff)
                    alle = [g, teff, pnums]
                    alle_final.append(alle)

    plt.plot(np.log10(logteffs), np.log10(loggs), label='mass = %f' % m)

    plt.plot([
        Log_Teff_lower, Log_Teff_upper, Log_Teff_upper, Log_Teff_lower,
        Log_Teff_lower
    ], [Log_g_lower, Log_g_lower, Log_g_upper, Log_g_upper, Log_g_lower],
             'r-.',
             alpha=0.5,
             linewidth=3)
    plt.plot(Log_Teff_obs, Log_g_obs, 'r*')

    #ax.set_xlim([3.7,4.05])
    #ax.set_ylim([3.2,4.2])

    alle = []
    differences_radial = []
    differences_first = []
    minValueRadial = None
    minValueFirst = None
    diffsndirs_radial = []
    diffsndirs_first = []

    for root, dirs, files in sorted(os.walk(fname)):
        files.sort(key=lambda x: '{0:0>20}'.format(x))
        for file in files:

            if file.endswith('freqs.dat'):

                gyredirs = os.path.join(root, file)
                gyreroots = os.path.join(root)
                gnum = re.search('profile(.+?)-freqs.dat', gyredirs)

                if gnum:
                    gnums = gnum.group(1)
                if int(gnums) >= int(constraint_noprems):
                    #print(gnums)
                    freqs = gyr.readmesa(gyredirs)

                    if freqs[0][1] == 1 and freqs[1][1] == 2:
                        difference_funda = np.abs(freqs[0][4] - radial_funda)
                        difference_first = np.abs(freqs[1][4] - radial_first)
                        #differences.append()

                        currentValueRadial = difference_funda

                        if minValueRadial == None:
                            minValueRadial = currentValueRadial
                        else:
                            minValueRadial = min(minValueRadial,
                                                 currentValueRadial)

                        currentValueFirst = difference_first

                        if minValueFirst == None:
                            minValueFirst = currentValueFirst
                        else:
                            minValueFirst = min(minValueFirst,
                                                currentValueFirst)

                        differences_radial.append(difference_funda)
                        differences_first.append(difference_first)
                        temp_radial = [gyredirs, difference_funda]
                        temp_first = [gyredirs, difference_first]
                        diffsndirs_radial.append(temp_radial)
                        diffsndirs_first.append(temp_first)

    minimum_radial = differences_radial.index(minValueRadial)
    minimum_profile_radial = diffsndirs_radial[minimum_radial]
    minimum_first = differences_first.index(minValueFirst)
    minimum_profile_first = diffsndirs_first[minimum_first]

    best_g_radial = alle_final[minimum_radial][0]
    best_teff_radial = alle_final[minimum_radial][1]
    best_g_first = alle_final[minimum_first][0]
    best_teff_first = alle_final[minimum_first][1]

    allbest_radial = [
        best_g_radial, best_teff_radial, minimum_profile_radial[0]
    ]
    allbest_first = [best_g_first, best_teff_first, minimum_profile_first[0]]

    plt.plot(np.log10(best_teff_radial),
             np.log10(best_g_radial),
             'k.',
             MarkerSize=15)
    plt.plot(np.log10(best_teff_first),
             np.log10(best_g_first),
             'g.',
             MarkerSize=8)

    allbest = [allbest_radial, allbest_first]
    xlabel(r'$\logT_{eff}$')
    ylabel(r'$\log(g)$')
    legend()

    plt.rcParams.update({'font.size': 15})
    #plt.axis((3.8,3.9,3.3,4.0))
    plt.gca().invert_xaxis()
    plt.gca().invert_yaxis()

    return allbest